精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x)满足f(x)=f(x+4),当2≤x≤6时,f(x)=(
1
2
|x-m|+n,f(4)=31.
(1)求m,n的值;
(2)比较f(log3m)与f(log3n)的大小.
(1)因为函数f(x)在R上满足f(x)=f(x+4),
所以4是函数f(x)的一个周期.
可得f(2)=f(6),即
1
2
|2-m|
+n=(
1
2
)
|6-m|
+n,①
又f(4)=31,
1
2
|4-m|
+n=31,②
联立①②组成方程组解得m=4,n=30.
(2)由(1)知,函数f(x)=(
1
2
)
|x-4|
+30,x∈[2,6].
因为1<log34<2,所以5<log34+4<6.
f(log3m)=f(log34)=f(log34+4)
=
1
2
|log34+4-4|
+30
=(
1
2
|log34|+30.
又因为3<log330<4,
f(log3n)=f(log330)=(
1
2
)|log330-4|+30

=(
1
2
)4-log330+30=(
1
2
)log3
81
30
+30.

因为log3
81
30
<log34

?(
1
2
)log34<(
1
2
)log3
81
30
?(
1
2
)log34+30<(
1
2
)log3
81
30
+30.

所以f(log3m)<f(log3n).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0,
π
2
]时,f(x)=sinx,则f(
3
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

20、已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)在x=-1处取极值.
(1)求f(x)的解析式;
(2)讨论f(x)在区间[-3,3]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:f(x+2)=
1-f(x)1+f(x)
,当x∈(0,4)时,f(x)=x2-1,则f(2010)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值与最小值的差为4,相邻两个最低点之间距离为π,函数y=sin(2x+
π
3
)图象所有对称中心都在f(x)图象的对称轴上.
(1)求f(x)的表达式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函数f(x)一定存在零点的区间是(  )

查看答案和解析>>

同步练习册答案