精英家教网 > 高中数学 > 题目详情

设数列{(-1)n-1•n}的前n项和为Sn,则S2009=________.

1005
分析:S2009=1-2+3-4+5-6+…+2007-2008+2009,再利用分组求和,即可得到结论.
解答:由题意,S2009=1-2+3-4+5-6+…+2007-2008+2009=(1+3+5+…+2009)-(2+4+…+2008)
=-=1005
故答案为:1005.
点评:本题考查数列的求和,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义:对于任意n∈N*,满足条件
an+an+2
2
an+1
且an≤M(M是与n无关的常数)的无穷数列an称为T数列.
(1)若an=-n2+9n(n∈N*),证明:数列an是T数列;
(2)设数列bn的通项为bn=50n-(
3
2
)n
,且数列bn是T数列,求常数M的取值范围;
(3)设数列cn=|
p
n
-1|
(n∈N*,p>1),问数列bn是否是T数列?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

第29届奥运会在北京举行.设数列an=logn+1(n+2)(n∈N*).定义使a1•a2•a3•…•ak为整数的实数k为奥运吉祥数,则在区间[1,2 008]内的所有奥运吉祥数之和为(  )
A、1004B、2026C、4072D、2044

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:数列{an}的通项公式为an=3n-1(n∈N*),等差数列{bn}中,bn>0且b1+b2+b3=15又a1+b1,a2+b2,a3+b3成等比.求:
(1)数列{bn}的通项公式.
(2)设数列cn=
1bn2-1
(n∈N*),求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

第29届奥运会在北京举行.设数列an=logn+1(n+2)(n∈N),定义使a1,a2,a3,…,ak为整数的实数k为奥运吉祥数,则在区间[1,2008]内的所有奥运吉祥数之和为
2026
2026

查看答案和解析>>

科目:高中数学 来源:《2.3-2.5 数列求和的基本方法》2011年同步练习(解析版) 题型:选择题

第29届奥运会在北京举行.设数列an=logn+1(n+2)(n∈N*).定义使a1•a2•a3•…•ak为整数的实数k为奥运吉祥数,则在区间[1,2 008]内的所有奥运吉祥数之和为( )
A.1004
B.2026
C.4072
D.2044

查看答案和解析>>

同步练习册答案