精英家教网 > 高中数学 > 题目详情
已知P是双曲线右支上的一点,双曲线的一条渐近线方程为3x-y=0、设F1、F2分别为双曲线的左、右焦点、若|PF2|=3,则|PF1|=   
【答案】分析:由双曲线的一条渐近线方程为3x-y=0可得:a=1,又双曲线的定义知|PF1|-|PF2|=2a,计算可得答案.
解答:解:∵双曲线的一条渐近线方程为3x-y=0,
∴a=1,
由双曲线的定义知|PF1|-|PF2|=2a=2,
∴|PF1|-3=2,
∴|PF1|=5.
故答案为:5.
点评:本题考查圆锥曲线的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源:2009-2010学年黑龙江省鹤岗一中高二(上)期中数学试卷(理科)(解析版) 题型:填空题

已知P是双曲线右支上的一点,双曲线的一条渐近线方程为3x-y=0、设F1、F2分别为双曲线的左、右焦点、若|PF2|=3,则|PF1|=   

查看答案和解析>>

科目:高中数学 来源:2008年江苏省南通市通州区兴仁中学高二期末数学模拟试卷(解析版) 题型:填空题

已知P是双曲线右支上的一点,双曲线的一条渐近线方程为3x-y=0、设F1、F2分别为双曲线的左、右焦点、若|PF2|=3,则|PF1|=   

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三数学填空题专练7(解析版) 题型:解答题

已知P是双曲线右支上的一点,双曲线的一条渐近线方程为3x-y=0、设F1、F2分别为双曲线的左、右焦点、若|PF2|=3,则|PF1|=   

查看答案和解析>>

科目:高中数学 来源:广东省高考数学一轮复习:9.4 双曲线的几何性质(解析版) 题型:解答题

已知P是双曲线右支上的一点,双曲线的一条渐近线方程为3x-y=0、设F1、F2分别为双曲线的左、右焦点、若|PF2|=3,则|PF1|=   

查看答案和解析>>

同步练习册答案