精英家教网 > 高中数学 > 题目详情
(2013•自贡一模)已知函数f(x)=  
x+1
,  x
≤0,
log2x
,x>0
则函数y=f[f(x)]+1的零点个数是(  )
分析:由已知中函数f(x)=  
x+1
,  x
≤0,
log2x
,x>0
我们可以求出函数y=f[f(x)]+1的解析式,令y=0,我们可以分别求出方程f[f(x)]+1=0的根,进而得到其零点的个数
解答:解:由函数f(x)=  
x+1
,  x
≤0,
log2x
,x>0
可得
y=f[f(x)]+1=
x+3,x≤-1
log2(x+1)+1,-1<x≤0
log2x+2,0<x≤1
log2(log2x)+1,x>1

y=0⇒
x=-3,x≤-1
x=-
1
2
,-1<x≤0
x=
1
4
,0<x≤1
x=
2
,x>1

故函数y=f[f(x)]+1共4个零点,
故选A.
点评:本题考查的知识点是函数的零点,与方程根的关系,其中根据已知中函数Y=f(x)的解析式,求出函数y=f[f(x)]+1的解析式,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•自贡一模)运行如图所示的程序框图,则输出s的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•自贡一模)复数
1+i
4+3i
的虚部是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•自贡一模)集合M={x||x-3|<4},N={x|x2+x-2<0,x∈Z},则 M∩N(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•自贡一模)如图,四棱锥P-ABCD的底ABCD是矩形,PA⊥平面ABCD,AD=2,AB=1,E,F分别是AB,BC的中点N在轴上.
(I)求证:PF⊥FD;
(II)在PA上找一点G,使得EG∥平面PFD;
(III)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的余弦值.

查看答案和解析>>

同步练习册答案