精英家教网 > 高中数学 > 题目详情
如下图,在直三棱柱ABC—A1B1C1中,底面为直角三角形,∠ACB=90°,AC=6,BC=CC1=,P是BC1上一动点,则CP+PA1的最小值为_________.

解析:连A1B,沿BC1将△CBC1展开与△A1BC1在同一个平面内,如上图所示,连A1C,则A1C的长度就是所求的最小值.通过计算可得∠A1C1C=90°,又∠BC1C=45°,

∴∠A1C1C=135°,由余弦定理可求得A1C=.


练习册系列答案
相关习题

科目:高中数学 来源:导学大课堂必修二数学苏教版 苏教版 题型:022

如下图,有两个相同的直三棱柱,高为,底面三角形的三边长分别为3a、4a、5a(a>0).用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,全面积最小的是一个四棱柱,则a的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:022

(2005上海,11)如下图,有两个相同的直三棱柱,高为,底面三角形的三边长分别为3a4a5a(a0).用它们拼成一个三棱柱或四棱柱,在所有可能的情况中,全面积最小的是一个四棱柱,则a的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

如下图,在直三棱柱ABC—A1B1C1中,∠ACB=90°,BC=CC1=a,AC=2a.

(1)求证:AB1⊥BC1;

(2)求二面角B—AB1—C的大小;

(3)求点A1到平面AB1C的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如下图所示,直三棱柱A1B1C1―ABC中,C1C=CB=CA=2,AC⊥CB,D,E分别为棱C1C,B1C1的中点。

(1)求点B到面A1C1CA的距离;

(2)求二面角B―A1D―A的大小;

(3)在线段AC上是否存在一点F,使得EF⊥平面A1BD?若存在,确定其位置并证明结论;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

如下图所示,直三棱柱A1B1C1―ABC中,C1C=CB=CA=2,AC⊥CB,D,E分别为棱C1C,B1C1的中点。

(1)求点B到面A1C1CA的距离;

(2)求二面角B―A1D―A的大小;

(3)在线段AC上是否存在一点F,使得EF⊥平面A1BD?若存在,确定其位置并证明结论;若不存在,说明理由。

查看答案和解析>>

同步练习册答案