精英家教网 > 高中数学 > 题目详情

将一个真命题中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题,则该命题称为“可换命题”.下列四个命题:
①垂直于同一平面的两直线平行; ②垂直于同一平面的两平面平行;
③平行于同一直线的两直线平行; ④平行于同一平面的两直线平行.
其中是“可换命题”的是________.(填命题的序号)

①③
分析:根据题设中提供的可换命题的定义,对四个命题进行验证,四个命题交换后分别是
①垂直于同一直线的两个平面平行;
②垂直同一直线的两条直线平行;
③平行于同一平面的两个平面平行;
④平行于同一直线的两个平面平行.根据相关条件对其进行判断,得出正确命题.
解答:由题意,四个命题交换后所得命题分别是
①垂直于同一直线的两个平面平行;正确命题
②垂直同一直线的两条直线平行不是正确命题,在此情况下两直线的位置关系可能是相交、平行、异面;错误
③平行于同一平面的两个平面平行是正确命题,平面的平行关系具有传递性;正确
④平行于同一直线的两个平面平行不是正确命题,在此条件下两平面可能是相交与平行关系.错误
综上①③是“可换命题”
故答案为:①③
点评:本题考查空间中直线与平面之间的位置关系,解题的关键是对四个命题所涉及的知识点熟练掌握理解并能灵活应用,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、给出下列四个命题:
①已知集合A⊆{1,2,3,4},且A中至少含有一个奇数,则这样的集合A有12个;
②任意的三角形ABC中,有cos2A<cos2B的充要条件是A>B;
③平面上n个圆最多将平面分成2n2-4n+4个部分;
④空间中直角在一个平面上的正投影可以是钝角;
其中真命题的序号是
①②
(要求写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①设x1,x2∈R,则x1>1且x2>1的充要条件是x1+x2>2且x1x2>1;
②任意的锐角三角形ABC中,有sinA>cosB成立;
③平面上n个圆最多将平面分成2n2-4n+4个部分;
④空间中直角在一个平面上的正投影可以是钝角.
其中真命题的序号是
 
(要求写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列四个命题:
①已知集合A⊆{1,2,3,4},且A中至少含有一个奇数,则这样的集合A有12个;
②任意的三角形ABC中,有cos2A<cos2B的充要条件是A>B;
③平面上n个圆最多将平面分成2n2-4n+4个部分;
④空间中直角在一个平面上的正投影可以是钝角;
其中真命题的序号是______(要求写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列四个命题:
①设x1,x2∈R,则x1>1且x2>1的充要条件是x1+x2>2且x1x2>1;
②任意的锐角三角形ABC中,有sinA>cosB成立;
③平面上n个圆最多将平面分成2n2-4n+4个部分;
④空间中直角在一个平面上的正投影可以是钝角.
其中真命题的序号是______(要求写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源:2009-2010学年山东省德州市鲁北中学高三(上)期末数学试卷(解析版) 题型:填空题

给出下列四个命题:
①已知集合A⊆{1,2,3,4},且A中至少含有一个奇数,则这样的集合A有12个;
②任意的三角形ABC中,有cos2A<cos2B的充要条件是A>B;
③平面上n个圆最多将平面分成2n2-4n+4个部分;
④空间中直角在一个平面上的正投影可以是钝角;
其中真命题的序号是    (要求写出所有真命题的序号).

查看答案和解析>>

同步练习册答案