精英家教网 > 高中数学 > 题目详情
袋中装有2个白球,2个红球,它们大小、形状完全相同,仅强度不同,白球被击中1次破裂(成粉末),红球被击中2次破裂(被击中1次外形不改变).现随机击2次,设每次均击中一球,每球被击中的可能性相等,记ξ为袋中剩余球的个数.
(Ⅰ)求袋中恰好剩2个球的概率;
(Ⅱ)求ξ的分布列和数学期望.
(Ⅰ)袋中恰好剩2个球,表示分别击中两个白球,P(ξ=2)=
C12
×
1
4
×
1
3
=
1
6
…(4分)
(Ⅱ)ξ的可能取值:2,3,4  …(5分)
袋中恰好剩3个球分三类:击中一白一红P1=
C12
C12
×
1
4
×
1
3
=
1
3

击中一红一白P2=
C12
C12
×
1
4
×
1
4
=
1
4
;击中同一红球P3=
C12
×
1
4
×
1
4
=
1
8

∴P(ξ=3)=P1+P2+P3=
17
24
(8分)
P(ξ=4)=
C12
×
1
4
×
1
4
=
1
8
…(10分)
ξ的分布列如下:
ξ 2 3 4
P
1
6
17
24
1
8
Eξ=
1
6
+3×
17
24
+4× 
1
8
=
71
24
…(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

不透明的袋中装有2个白球、2个黑球、2个红球、2个绿球,无放回地从袋中抽4次球,每次抽一个,则第三次抽出红球的概率为
1
4
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宣城模拟)袋中装有2个白球,2个红球,它们大小、形状完全相同,仅强度不同,白球被击中1次破裂(成粉末),红球被击中2次破裂(被击中1次外形不改变).现随机击2次,设每次均击中一球,每球被击中的可能性相等,记ξ为袋中剩余球的个数.
(Ⅰ)求袋中恰好剩2个球的概率;
(Ⅱ)求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

袋中装有2个白球,2个红球,它们大小、形状完全相同,仅强度不同,白球被击中1次破裂(成粉末),红球被击中2次破裂(被击中1次外形不改变).现随机击2次,设每次均击中一球,每球被击中的可能性相等,记ξ为袋中剩余球的个数.
(Ⅰ)求袋中恰好剩2个球的概率;
(Ⅱ)求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省宣城市六校高三第三次联考数学试卷(理科)(解析版) 题型:解答题

袋中装有2个白球,2个红球,它们大小、形状完全相同,仅强度不同,白球被击中1次破裂(成粉末),红球被击中2次破裂(被击中1次外形不改变).现随机击2次,设每次均击中一球,每球被击中的可能性相等,记ξ为袋中剩余球的个数.
(Ⅰ)求袋中恰好剩2个球的概率;
(Ⅱ)求ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案