精英家教网 > 高中数学 > 题目详情
16.设椭圆$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}=1$的焦点为F1、F2,直线L过点F1,且与椭圆相交于A,B两点,则△ABF2的周长为(  )
A.9B.16C.20D.25

分析 利用椭圆的定义即可得出.

解答 解:∵椭圆$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}=1$,则a=5.
∴△ABF2的周长=|AB|+|AF2|+|BF2|═|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a=4×5=20.
故选:C.

点评 本题考查了椭圆的定义、三角形的周长,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若sin(π+α)+cos($\frac{π}{2}$+α)=-m,则cos($\frac{3}{2}π$-α)+2sin(2π-α)的值为(  )
A.-$\frac{2m}{3}$B.$\frac{2m}{3}$C.-$\frac{3m}{2}$D.$\frac{3m}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若关于x的函数y=(log${\;}_{\frac{1}{2}}$a)x是R上的减函数,则实数a的取值范围是($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点P(1,$\frac{3}{2}$),离心率e=$\frac{1}{2}$.
(Ⅰ)求椭圆C的方程
(Ⅱ)已知直线l:x=my+1与椭圆相交于A,B两点,记△ABP三条边所在直线的斜率的乘积为t,求t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右顶点,上顶点分别为M、N,过其左焦点F作直线l垂直于x轴,且与椭圆在第二象限交于点P,$\overrightarrow{MN}$=λ$\overrightarrow{OP}$
(1)求证:a=$\sqrt{b}$;
(2)若椭圆的弦AB过点E(2,0)并与坐标轴不垂直,设点A关于x轴的对称点A,直线A1B与x轴交于点R(5,0),求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1的焦点为F1、F2,点P为这个椭圆上的动点,当∠F1PF2为钝角时,点P横坐标的取值范围是(-$\frac{4\sqrt{6}}{3}$,$\frac{4\sqrt{6}}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知A(-2,0)是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与圆F:(x-c)2+y2=9的一个交点,且圆心F是椭圆的一个焦点,
(1)求椭圆C的方程;
(2)过F的直线交圆与P、Q两点,连AP、AQ分别交椭圆与M、N点,试问直线MN是否过定点?若过定点,则求出定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.关于x的一元二次方程x2-2ax+a+2=0在(1,3)内有两个不同实根,则a取值范围为(2,$\frac{11}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知幂函数y=f(x)的图象过点$(2,\sqrt{2})$,则f(9)=(  )
A.3B.$\frac{1}{3}$C.9D.$\frac{1}{9}$

查看答案和解析>>

同步练习册答案