精英家教网 > 高中数学 > 题目详情
对于任意实数x,函数f(x)=(5-a)x2-6x+a+5恒为正值,求a的取值范围.
分析:将函数f(x)=(5-a)x2-6x+a+5恒为正值转化为f(x)=(5-a)x2-6x+a+5>0,利用不等式的性质解决即可.
解答:解:要使函数f(x)=(5-a)x2-6x+a+5恒为正值,
则等价为(5-a)x2-6x+a+5>0恒成立,
若5-a=0,即a=5时,不等式等价为-6x+10>0,此时不满足条件.
∴a≠5,
要使不等式(5-a)x2-6x+a+5>0恒成立,
5-a>0
△=36-4(5-a)(a+5)<0

a<5
a2-16<0

解得-4<a<4,
∴a的取值范围是-4<a<4.
点评:本题主要考查不等式恒成立问题,利用一元二次不等式的性质是解决本题的关键,注意对二次项系数进行分类讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知对于任意实数x,函数f (x)满足f2(-x)=f2(x),若方程f (x)=0有2009个实数解,则这2009个实数解之和为
0

查看答案和解析>>

科目:高中数学 来源: 题型:

对于任意实数x,函数f(x)=ax2-ax+9恒为正值,则a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知对于任意实数x,函数f(x)满足f(1-x)=f(1+x),若方程f(x)=0有且仅有2009个实数解,则这2009个实数解之和为
2009
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•上海)已知对于任意实数x,函数f(x)满足f(-x)=f(x).若方程f(x)=0有2009个实数解,则这2009个实数解之和为
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知对于任意实数x,函数f(x)满足f(-x)=f(x).若方程f(x)=0有2011个实数解,则这2011个实数解之和为
0
0

查看答案和解析>>

同步练习册答案