精英家教网 > 高中数学 > 题目详情
平面直角坐标系xOy中,过椭圆M:
x2
a2
+
y2
b2
=1
(a>b>0)右焦点的直线x+y-
3
=0交M于A,B两点,P为AB的中点,且OP的斜率为
1
2

(Ⅰ)求M的方程
(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.
(Ⅰ)把右焦点(c,0)代入直线x+y-
3
=0得c+0-
3
=0,解得c=
3

设A(x1,y1),B(x2,y2),线段AB的中点P(x0,y0),
x21
a2
+
y21
b2
=1
x22
a2
+
y22
b2
=1
,相减得
x21
-
x22
a2
+
y21
-
y22
b2
=0

x1+x2
a2
+
y1+y2
b2
×
y1-y2
x1-x2
=0

2x0
a2
+
2y0
b2
×(-1)=0
,又kOP=
1
2
=
y0
x0

1
a2
-
1
2b2
=0
,即a2=2b2
联立得
a2=2b2
a2=b2+c2
c=
3
,解得
b2=3
a2=6

∴M的方程为
x2
6
+
y2
3
=1

(Ⅱ)∵CD⊥AB,∴可设直线CD的方程为y=x+t,
联立
y=x+t
x2
6
+
y2
3
=1
,消去y得到3x2+4tx+2t2-6=0,
∵直线CD与椭圆有两个不同的交点,
∴△=16t2-12(2t2-6)=72-8t2>0,解-3<t<3(*).
设C(x3,y3),D(x4,y4),∴x3+x4=-
4t
3
x3x4=
2t2-6
3

∴|CD|=
(1+12)[(x3+x4)2-4x3x4]
=
2[(-
4t
3
)
2
-4×
2t2-6
3
]
=
2
2
18-2t2
3

联立
x+y-
3
=0
x2
6
+
y2
3
=1
得到3x2-4
3
x=0,解得x=0或
4
3
3

∴交点为A(0,
3
),B(
4
3
3
,-
3
3
)

∴|AB|=
(
4
3
3
-0)
2
+(-
3
3
-
3
)
2
=
4
6
3

∴S四边形ACBD=
1
2
|AB||CD|
=
1
2
×
4
6
3
×
2
2
18-2t2
3
=
8
3
18-2t2
9

∴当且仅当t=0时,四边形ACBD面积的最大值为
8
3
6
,满足(*).
∴四边形ACBD面积的最大值为
8
3
6
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,已知,在边长为1的正方形ABCD的一边上取一点E,使AE=AD,从AB的中点F作HF⊥EC于H.

(1)求证:FH=FA;
(2)求EH∶HC的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆的方程为x2+y2=4,过点M(2,4)作圆的两条切线,切点分别为A1、A2,直线A1A2恰好经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右顶点和上顶点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线x=-1与椭圆相交于A、B两点,P是椭圆上异于A、B的任意一点,直线AP、BP分别交定直线l:x=-4于两点Q、R,求证
OQ
OR
为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线l与椭圆
x2
36
+
y2
9
=1
交于A和B两点,点(4,2)是线段AB的中点,则直线l的方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知圆E:(x+
3
2+y2=16,点F(
3
,0),P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q.
(Ⅰ)求动点Q的轨迹Γ的方程;
(Ⅱ)已知A,B,C是轨迹Γ的三个动点,A与B关于原点对称,且|CA|=|CB|,问△ABC的面积是否存在最小值?若存在,求出此时点C的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xoy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点M(3
2
2
),椭圆的离心率e=
2
2
3

(1)求椭圆C的方程;
(2)过点M作两直线与椭圆C分别交于相异两点A、B.若∠AMB的平分线与y轴平行,试探究直线AB的斜率是否为定值?若是,请给予证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设集合A={(x,y)|y=2x-1,x∈N*},B={(x,y)|y=ax2-ax+a,x∈N*},问是否存在非零整数a,使A∩B≠∅?若存在,请求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若点P(2,-1)平分椭圆
x2
12
+
y2
8
=1
的一条弦,则该弦所在的直线方程为______.(结果写成一般式)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设椭圆
x2
a2
+
y2
b2
=1(a>b>0)长轴的右端点为A,短轴端点分别为B、C,另有抛物线y=x2+b.
(Ⅰ)若抛物线上存在点D,使四边形ABCD为菱形,求椭圆的方程;
(Ⅱ)若a=2,过点B作抛物线的切线,切点为P,直线PB与椭圆相交于另一点Q,求
|PQ|
|QB|
的取值范围.

查看答案和解析>>

同步练习册答案