精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=x2-2|x-a|
(1)若函数y=f(x)为偶函数,求a的值;
(2)若a=$\frac{1}{2}$,求函数y=f(x)的单调递增区间.

分析 (1)根据f(-x)=f(x)恒成立,求得a的值.
(2)化简函数f(x)的解析式,数形结合求得f(x)的单调增区间.

解答 解:(1)任取x∈R,则有f(-x)=f(x)恒成立,
即(-x)2-2|-x-a|=x2-2|x-a|恒成立,
即|x+a|=|x-a|恒成立,a=0.
(2)当a=$\frac{1}{2}$时,f(x)=x2-2|x-$\frac{1}{2}$|=$\left\{\begin{array}{l}{{x}^{2}-2x+1(x≥\frac{1}{2})}\\{{x}^{2}+2x-1(x<\frac{1}{2})}\end{array}\right.$,
由函数的图象可知,函数的单调递增区间为:
(-1,$\frac{1}{2}$]、[1,+∞).

点评 本题主要考查分段函数的应用,带有绝对值的函数,体现了数形结合、分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.数列{an}满足:a1=2,a${\;}_{n+1}={a}_{n}+λ•{2}^{n}$,且a1、a2+1、a3成等差数列,其中n∈N+
(1)求实数λ的值及数列{an}的通项公式;
(2)若不等式$\frac{p}{2n-5}≤\frac{2p+16}{{a}_{n}}$成立的自然数n恰有4个,求正整数p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(Ⅰ)已知角α终边上一点P(-4,3),求$\frac{{cos(\frac{π}{2}+α)sin(-π-α)}}{{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}}$的值.
(Ⅱ)已知$\overrightarrow a$=(3,1),$\overrightarrow b$=(sinα,cosα),且$\overrightarrow a$∥$\overrightarrow b$,求$\frac{4sinα-2cosα}{5cosα+3sinα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.计算i+2i2+3i3+…+2016i2016=1008-1008i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在直四棱柱ABCD-A1B1C1D1中,AB∥CD,AA1=1,AB=3k,AD=4k,BC=5k,DC=6k(k>0);
(1)求证:CD⊥平面ADD1A1
(2)现将与四棱柱ABCD-A1B1C1D1形状和大小完全相同的两个四棱柱拼接成一个新的四棱柱,规定:若拼接成的新的四棱柱形状完全相同,则视为同一种拼接方案;问:共有几种不同的方案?在这些拼接成的新四棱柱中,记其中最小的表面积为f(k),写出f(k)的表达式(直接写出答案,不必说明理由).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设F为抛物线y2=4x的焦点,A,B,C为该抛物线上不同的三点,$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=$\overrightarrow{0}$,O为坐标原点,且△OFA、△OFB、△OFC的面积分别为S1、S2、S3,则S12+S22+S32=(  )
A.2B.3C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数y=f(x)是定义域为R的偶函数,当x≥0时,f(x)=$\left\{\begin{array}{l}{\frac{5}{4}sin\frac{π}{4}x,0x≤2}\\{(\frac{1}{2})^{x}+1,x>2}\end{array}\right.$,则关于x的方程f(x2+2x)=a的实数根个数不可能为(  )
A.5个B.4个C.3个D.2个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知点F1(-1,0),F2(1,0)是椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦点,过点P(0,3)的直线l与椭圆交于A,B两点,且|AF1|+|AF2|=4.
(1)求椭圆C的标准方程;
(2)若$\overrightarrow{PA}$=$\overrightarrow{AB}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=cos($\frac{π}{3}$+x)cos($\frac{π}{3}$-x)-sinxcosx+$\frac{1}{4}$.
(1)求函数f(x)的最小正周期和最大值并求取得最大值时的x的取值集合;
(2)求函数f(x)单调递减区间.

查看答案和解析>>

同步练习册答案