精英家教网 > 高中数学 > 题目详情
2.已知空间两点P1(-1,3,5),P2(2,4,-3),则|P1P2|等于(  )
A.$\sqrt{74}$B.3$\sqrt{10}$C.$\sqrt{14}$D.$\sqrt{53}$

分析 直接利用空间距离公式求解即可.

解答 解:空间两点P1(-1,3,5),P2(2,4,-3),
则|P1P2|=$\sqrt{{(2+1)}^{2}+{(4-3)}^{2}+{(-3-5)}^{2}}$=$\sqrt{74}$.
故选:A.

点评 本题考查空间距离公式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的首项a1=2,且an+1=3an-t(n-1)(t∈R),若数列{bn}前n项和为Tn=-n2,且an+1+bn+1=3(an+bn)对任意的n∈N*恒成立.
(1)求t的值;
(2)设数列{anbn+bn2}的前n项和为Sn,问是否存在互不相等且大于2的正整数m,k,r,使得m,k,r成等差数列的同时Sm+1,Sk+1,Sr+1成等比数列?若存在,求出m,k,r的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知tan(2π-θ)=-$\frac{1}{2}$,且θ是第三象限角.
(1)求tanθ的值;
(2)设函数f(x)=$\frac{sin(π+x)-3cos(π+x)+sin(\frac{3}{2}π-x)}{cos(x-\frac{π}{2})+cos(3π-x)}$,求f(θ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.二项式${({2\sqrt{x}+\frac{1}{{\root{4}{x}}}})^n}$(n∈N)的展开式中,前三项的系数依次成等差数列,则此展开式有理项的项数是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.运行如下程序框图,如果输入的t∈[-1,3],则输出s属于(  )
A.[-4,3]B.[-5,2]C.[-3,4]D.[-2,5].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若f($\frac{1-x}{1+x}$)=$\frac{1-{x}^{2}}{1+{x}^{2}}$,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xoy中,已知经过原点O的直线l与圆C:x2+y2-4x-1=0交于A,B两点.
(1)若直线m:ax-2y+a+2=0(a>0)与圆C相切,切点为B,求直线l的方程;
(2)若OB=2OA,求直线l的方程;
(3)若圆C与x轴的正半轴的交点为D,求△ABD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow{m}$=(2cos2x,$\sqrt{3}$),$\overrightarrow{n}$=(1,sin2x),函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$-1.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=2,c=1,ab=2$\sqrt{3}$,且a>b,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.sin(-120°)的值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案