精英家教网 > 高中数学 > 题目详情
函数f(x)对任意实数x、y均有f(x+y)-f(y)=(x+2y+1)x成立,且f(1)=0.
(1)求f(0)的值;
(2)求f(x)的解析式;
(3)当x∈(0,  
1
2
)
时,f(x)+2<a恒成立,求a的取值范围.
(1)令x=1,y=0得f(1)-f(0)=(1+2×0+1)×1=2,
移向得出f(0)=f(1)-2=0-2=-2
∴f(0)=-2.…(4分)
(2)令y=0得f(x)-f(0)=(x+2×0+1)x=x(x+1),…(7分)
于是f(x)=x(x+1)+f(0)=x2+x-2.…(9分)
(3)令g(x)=f(x)+2=x2+x=(x+
1
2
)2-
1
4
,…(11分)
根据二次函数的性质,
g(x)=f(x)+2=(x+
1
2
)2-
1
4
在区间(0,  
1
2
)
上是增函数,…(13分)
∴g(x )∈(g(0),  g(
1
2
))
,即g(x)∈(0, 
3
4
)
.…(15分)
∵当x∈(0,  
1
2
)
时,f(x)+2<a恒成立,故a≥
3
4
. …(16分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、例5.已知函数f(x)对其定义域内的任意两个数a,b,当a<b时,都有f(a)<f(b),证明:f(x)=0至多有一个实根.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)对任意x∈R,满足f(x)=f(4-x).如果方程f(x)=0恰有2011个实根,则所有这些实根之和为(  )
A、0B、2011C、4022D、8044

查看答案和解析>>

科目:高中数学 来源:江西省重点中学协作体2012届高三第一次联考数学文科试题 题型:013

设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f·g)x和(f·g)(x):对任意x∈R,(f·g)(x)=f(g(x));(f·g)(x)=f(x)g(x),则下列等式恒成立的是

[  ]
A.

((f·g)·h)(x)=((f·h)·(g·h))(x)

B.

((f·g)·h)(x)=((f·h)·(g·h))(x)

C.

((f·g)·h)(x)=((f·h)·(g·h))(x)

D.

((f·g)·h)(x)=((f·h)·(g·h))(x)■(选项一样)

查看答案和解析>>

科目:高中数学 来源:江西省重点中学协作体2012届高三第一次联考数学理科试题 题型:013

设f(x),g(x),h(x)是R上的实值函数,如下定义两个函数(f·g)(x)和(f·g)(x):对任意x∈R,(f·g)(x)=f(g(x));(f·g)(x)=f(x)g(x),则下列等式恒成立的是

[  ]
A.

((f·g)·h)(x)=((f·h)·(g·h))(x)

B.

((f·g)·h)(x)=((f·h)·(g·h))(x)

C.

((f·g)·h)(x)=((f·h)·(g·h))(x)

D.

((f·g)·h)(x)=((f·h)·(g·h))(x)

查看答案和解析>>

科目:高中数学 来源:高考数学一轮复习必备(第05课时):第一章 集合与简易逻辑-简易逻辑(解析版) 题型:解答题

例5.已知函数f(x)对其定义域内的任意两个数a,b,当a<b时,都有f(a)<f(b),证明:f(x)=0至多有一个实根.

查看答案和解析>>

同步练习册答案