精英家教网 > 高中数学 > 题目详情
13.若曲线y=e-x上点P处的切线平行于直线2x+y+1=0,则点P的坐标为(-ln2,2).

分析 先设P(x,y),对函数求导,由在在点P处的切线与直线2x+y+1=0平行,求出x,最后求出y.

解答 解:设P(x,y),则y=e-x
∵y′=-e-x,在点P处的切线与直线2x+y+1=0平行,
令-e-x=-2,解得x=-ln2,
∴y=e-x=2,故P(-ln2,2).
故答案为:(-ln2,2).

点评 本题考查了导数的几何意义,即点P处的切线的斜率是该点出的导数值,以及切点在曲线上和切线上的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.如图,在△ABC和△AEF中,B是EF的中点,AB=EF=1,CA=CB=2,若$\overrightarrow{AB}$•$\overrightarrow{AE}$+
$\overrightarrow{AC}$•$\overrightarrow{AF}$=2,则$\overrightarrow{EF}$与$\overrightarrow{BC}$的夹角的余弦值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知y=-$\frac{\sqrt{2}}{2}$x+$\sqrt{10}$,求参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知点P(x,y)是曲线$\left\{{\begin{array}{l}{x=2+cosθ}\\{y=1+sinθ}\end{array}}\right.({θ为参数})$上的一个动点,则$\frac{y}{x}$的最大值为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an},{bn}满足${a_1}=\frac{1}{4},{a_n}+{b_n}=1,{b_{n+1}}=\frac{b_n}{{(1-{a_n})(1+{a_n})}}$.
(Ⅰ)求b1,b2,b3,b4
(Ⅱ)设${c_n}=\frac{1}{{{b_n}-1}}$,证明数列{cn}是等差数列;
(Ⅲ)设Sn=a1a2+a2a3+a3a4+…+anan+1,不等式4aSn<bn恒成立时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知△OCB中,B、C关于点A对称,D是将OB分成2:1的一个内分点,DC和OA交于点E,设$\overrightarrow{OA}=\overrightarrow a,\overrightarrow{OB}=\overrightarrow b$.
(1)用$\overrightarrow a,\overrightarrow b$表示向量$\overrightarrow{OC}$,$\overrightarrow{DC}$.
(2)若$\overrightarrow{OE}=λ\overrightarrow{OA}$,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知集合A={x|x2-2x-3≤0},B={x|x≥0},则A∩B=[0,3]..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图所示的五个区域中,现有四种颜色可供选择.要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为(  )
A.24种B.48种C.72种D.96种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.证明:如果圆锥的轴截面是直角三角形,则它的侧面积是底面积的$\sqrt{2}$倍.

查看答案和解析>>

同步练习册答案