精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)是(-∞,+∞)上是严格单调增函数,a、b∈R,写出命题“若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b)”的逆命题、否命题和逆否命题,并判断真假,说明理由.

分析 本题考查的知识点是四种间的逆否关系及四种命题,由已知函数f(x)在(-∞,+∞)上是增函数,我们可以先判断原命题的真假,然后根据互为逆否命题的真假性相同,我们也可以得到其逆否命题真假;然后再证明其否命题的真假,再根据其否命题与其逆命题也互为逆否命题,真假性也相同,即可得到其逆命题的真假.

解答 解:(1)逆命题:若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).
这是一个真命题,证明如下
∵函数f(x)是(-∞,+∞)上的增函数,且a+b≥0得a≥-b,
∴f(a)≥f(-b),同理可得f(b)≥f(-a)
将以上两个不等式相加,可得f(a)+f(b)≥f(-a)+f(-b).
(2)否命题:若f(a)+f(b)<f(-a)+f(-b),则a+b<0.
这是一个真命题,证明如下
假设结论不成立,即a+b≥0,
则由(1)可得f(a)+f(b)≥f(-a)+f(-b),与条件f(a)+f(b)<f(-a)+f(-b)矛盾.
所以结论a+b<0成立,否命题也是一个真命题;
(3)其逆否命题:“若f(a)+f(b)<f(-a)+f(-b),则a+b<0”也为真.
再证否命题“若a+b<0,则f(a)+f(b)<f(-a)+f(-b)”为真.
a+b<0⇒a<-b,b<-a
⇒f(a)<f(-b),f(b)<f(-a)
⇒f(a)+f(b)<f(-b)+f(-a).
故其逆命题:“若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0”也为真.

点评 已知原命题,写出它的其他三种命题,首先把原命题改写成“若p,则q”的形式,然后找出其条件p和结论q,再根据四种命题的定义写出其他命题.逆命题:“若q,则p”;否命题:“若?p,则?q”;逆否命题:“若?q,则?p”,对写出的命题也可简洁表述;对于含有大前提的命题,在改写命题形式时,大前提不要动.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在六棱柱ABCDEFA1B1C1D1E1F1中.
(1)化简$\overrightarrow{{{A}_{1}F}_{1}}$-$\overrightarrow{EF}$+$\overrightarrow{AB}$+$\overrightarrow{{CC}_{1}}$,并在图中标出化简结果的向量.
(2)化简$\overrightarrow{AB}$+$\overrightarrow{{CC}_{1}}$+$\overrightarrow{DE}$+$\overrightarrow{{{B}_{1}D}_{1}}$,并在图中标出化简结果的向量.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列条件,能使sinα+cossα>1成立的是(  )
A.0<α<πB.0<α<$\frac{3π}{2}$C.0<α<$\frac{π}{2}$D.$\frac{π}{4}$≤α≤$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设a为实参数,试讨论y=asin2x+2cosx-a-2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某校组织高一学生对所在市的居民中拥有电视机、电冰箱、组合音响的情况进行一次抽样调查,调查结果:3户特困户三种全无;有一种的:电视机1090户,电冰箱747户,组合音响850户;有两种的:电视机、组合音响570户,组合音响、电冰箱420户,电视机、电冰箱520户;“三大件”都有的265户.调查组的同学在统计上述数字时,发现没有记下被调查的居民总户数,你能避免重新调查而解决这个问题吗?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知映射f:A→B,其中A=B=R,对应法则f:x→y=($\frac{1}{3}$)x2+2x,对于实数m∈B在集合A中存在元素与之对应,则m的取值范围是(  )
A.m≤3B.m≥3C.m>3D.0<m≤3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个几何体的三视图如图所示,则这个几何体的体积为(  )
A.$\frac{5}{6}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题正确的个数是(  )
(1)命题“若m>0,则方程x2+x-m=0有实根”的逆否命题为:“若方程x2+x-m=0无实根,则m≤0”
(2)对于命题p:“?x∈R使得x2+x+1<0”,则¬p:“?x∈R,均有x2+x+1≥0”
(3)“x=1”是“x2-3x+2=0”的充分不必要条件
(4)若p∧q为假命题,则p,q均为假命题.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设点P(x,y)是曲线a|x|+b|y|=1(a≥0,b≥0)上任意一点,其坐标(x,y)均满足$\sqrt{{x^2}+{y^2}+4x+4}+\sqrt{{x^2}+{y^2}-4x+4}≤8$,则$2a+\sqrt{3}b$的取值范围为[1,+∞).

查看答案和解析>>

同步练习册答案