精英家教网 > 高中数学 > 题目详情

已知数列,构造一个新数列…,…,此数列是首项

为1,公比为的等比数列,则=___________.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数 f(x)=ax2+bx+c(x∈R),满足f(0)=f(
1
2
)=0
且f(x)的最小值是-
1
8
.设数列{an}的前n项和为Sn,对一切(n∈N*),点(n,Sn)在函数f(x)的图象上.
(1)求数列{an}的通项公式;
(2)通过bn=
sn
n+c
构造一个新的数列{bn},是否存在非零常数c,使得{bn}为等差数列;
(3)令cn=
sn+n
n
,设数列{cn•2cn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中,公差d>0,其前n项和为Sn,且满足a2•a3=45,a1+a4=14.
(1)求数列{an}的通项公式;
(2)通过bn=
Sn
n+c
构造一个新的数列{bn},是否存在一个非零常数c,使{bn}也为等差数列;
(3)求f(n)=
bn
(n+2009)•bn+1
(n∈N+)
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宝山区模拟)已知等差数列{an}中,公差d>0,其前n项和为Sn,且满足a2•a3=45,a1+a4=14,
(1)求数列{an}的通项公式;
(2)通过bn=
Sn
n+c
构造一个新的数列{bn},求非零常数c,使{bn}也为等差数列;
(3)对于(2)中符合条件的数列{bn},求f(n)=
bn
(n+2010)•bn+1
(n∈N*)
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:044

已知数列,构造成一个新数列:,…,,…,此数列首项为1,公比为的等比数列.

(1)求数列的通项;

(2)求数列的前n项和

查看答案和解析>>

同步练习册答案