精英家教网 > 高中数学 > 题目详情
如图,AB为圆O的直径,点E、F在圆O上,且AB∥EF,矩形ABCD所在的平面与圆O所在的平面互相垂直,已知AB=2,AD=EF=1.
(Ⅰ)设FC的中点为M,求证:OM∥平面DAF;
(Ⅱ)设平面CBF将几何体EF-ABCD分割成的两个锥体的体积分别为VF-ABCD、VF-CBE,求VF-ABCD:VF-CBE的值.
分析:(Ⅰ)如图,设FD的中点为N,连结AN,MN,证明MNAO为平行四边形,可得OM∥AN.再利用直线和平面平行的判定定理证得 OM∥平面DAF.
(Ⅱ)如图,过点F作FG⊥AB于G,可得FG⊥平面ABCD.先求得 VF-ABCD 的值,再用等体积法求得VF-CBE=VC-BEF=
1
3
S△BEF•CB的值,可得 VF-ABCD:VF-CBE 的值.
解答:解:(Ⅰ)如图,设FD的中点为N,连结AN,MN.
∵M为FC的中点,∴MN∥CD,MN=
1
2
CD.
又AO∥CD,AO=
1
2
CD,∴MN∥AO,MN=AO,
∴MNAO为平行四边形,∴OM∥AN.
又OM?平面DAF,AN?平面DAF,∴OM∥平面DAF.…(6分)
(Ⅱ)如图,过点F作FG⊥AB于G,∵平面ABCD⊥平面ABEF,∴FG⊥平面ABCD.
∴VF-ABCD=
1
3
 SABCD•FG=
2
3
FG.
∵CB⊥平面ABEF,∴VF-CBE=VC-BEF=
1
3
 S△BEF•CB=
1
3
1
2
EF•FG•CB=
1
6
FG.
∴VF-ABCD:VF-CBE=
2
3
•FG
1
6
•FG
=4.…(13分)
点评:本题主要考查直线和平面平行的判定定理的应用,用等体积法求棱椎的体积,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理科)如图的多面体是底面为平行四边形的直四棱柱ABCD-A1B1C1D1,经平面AEFG所截后得到的图形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
精英家教网
(Ⅰ)求证:BD⊥平面ADG;
(Ⅱ)求平面AEFG与平面ABCD所成锐二面角的余弦值.

(文科)如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求证:AF⊥平面CBF;
(Ⅱ)设FC的中点为M,求证:OM∥平面DAF.
精英家教网

查看答案和解析>>

科目:高中数学 来源:2010-2011学年山东省济南市高三12月质量检测数学文卷 题型:解答题

(本小题满分12分)如图,AB为圆O的直

径,点E、F在圆O上,AB∥EF,矩形ABCD

所在的平面和圆O所在的平面垂直,且.

⑴求证:

⑵设FC的中点为M,求证:

⑶设平面CBF将几何体分成的两个锥体的体积分别为,求的值.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(理科)如图的多面体是底面为平行四边形的直四棱柱ABCD-A1B1C1D1,经平面AEFG所截后得到的图形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.

(Ⅰ)求证:BD⊥平面ADG;
(Ⅱ)求平面AEFG与平面ABCD所成锐二面角的余弦值.

(文科)如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求证:AF⊥平面CBF;
(Ⅱ)设FC的中点为M,求证:OM∥平面DAF.

查看答案和解析>>

科目:高中数学 来源:2010年辽宁省锦州市高考数学二模试卷(解析版) 题型:解答题

(理科)如图的多面体是底面为平行四边形的直四棱柱ABCD-A1B1C1D1,经平面AEFG所截后得到的图形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.

(Ⅰ)求证:BD⊥平面ADG;
(Ⅱ)求平面AEFG与平面ABCD所成锐二面角的余弦值.

(文科)如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求证:AF⊥平面CBF;
(Ⅱ)设FC的中点为M,求证:OM∥平面DAF.

查看答案和解析>>

科目:高中数学 来源:陕西省宝鸡中学2010届高三适应性训练(数学理) 题型:填空题

 A.(参数方程与极坐标)

直线与直线的夹角大小为         

 

B.(不等式选讲)要使关于x的不等式在实数

范围内有解,则A的取值范围是                  

C.(几何证明选讲) 如图所示,在圆O中,AB是圆O的直

径AB =8,E为OB.的中点,CD过点E且垂直于AB,

EF⊥AC,则

CF•CA=            

 

 

 

 

查看答案和解析>>

同步练习册答案