精英家教网 > 高中数学 > 题目详情

【题目】已知圆的一条直角是椭圆的长轴,动直线,当过椭圆上一点且与圆相交于点时,弦的最小值为.

(1)求圆即椭圆的方程;

(2)若直线是椭圆的一条切线,是切线上两个点,其横坐标分别为,那么以为直径的圆是否经过轴上的定点?如果存在,求出定点坐标;若不存在,请说明理由.

【答案】(1).(2)过定点.

【解析】试题分析:(1)先根据垂径定理求半径,再根据点在椭圆上解得(2)设点的坐标,化简条件,再联立切线方程与椭圆方程,根据判别式为零得等量关系,代入并化简可得,即得结论

试题解析:(1)当时,最小,

由已知,可知

又点在椭圆上上,

综上,圆的方程为

椭圆的方程为.

(2)联立方程,得到,由与椭圆相切,得到,①

易知,设以为直径的圆经过,设则有

,②

①②可知,

要使上式成立,有只有当,故经过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图, 是边长为3的正方形, 平面 平面 .

(1)证明:平面平面

(2)在上是否存在一点,使平面将几何体分成上下两部分的体积比为?若存在,求出点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列关于古典概型的说法中正确的是( )

①试验中所有可能出现的基本事件只有有限个;

②每个事件出现的可能性相等;

③每个基本事件出现的可能性相等;

④基本事件的总数为n,随机事件A若包含k个基本事件,则.

A. ②④ B. ③④ C. ①④ D. ①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.

表中

(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)

(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;

(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:

(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少?

(ⅱ)年宣传费x为何值时,年利润的预报值最大?

附:对于一组数据,,……,,其回归线的斜率和截距的最小二乘估计分别为:

46.6

563

6.8

289.8

1.6

1469

108.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点为椭圆的左焦点,直线被椭圆截得弦长为

(1)求椭圆的方程;

(2)圆与椭圆交于两点, 为线段上任意一点,直线交椭圆两点为圆的直径,且直线的斜率大于,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若恒成立,求实数的取值范围;

(2)已知关于的方程有两个实根,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如图,则下面结论中错误的一个是(  )

A. 甲的极差是29 B. 甲的中位数是24

C. 甲罚球命中率比乙高 D. 乙的众数是21

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校因为寒假延期开学,根据教育部停课不停学的指示,该学校组织学生线上教学,高一年级在线上教学一个月后,为了了解线上教学的效果,在线上组织了数学学科考试,随机抽取50名学生的成绩并制成频率分布直方图如图所示.

1)求m的值,并估计高一年级所有学生数学成绩在分的学生所占的百分比;

2)分别估计这50名学生数学成绩的平均数和中位数.(同一组中的数据以该组区间的中点值作代表,结果精确到0.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的广告费支出与销售额 (单位:万元)具有较强的相关性,且两者之间有如下对应数据:

2

4

5

6

8

28

36

52

56

78

(1)求关于的线性回归方程

(2)根据(1)中的线性回归方程,当广告费支出为10万元时,预测销售额是多少?

参考数据:

附:回归方程中斜率和截距的最小二乘估计公式分别为:

.

查看答案和解析>>

同步练习册答案