精英家教网 > 高中数学 > 题目详情

设椭圆+y2=1的左焦点为F,P为椭圆上一点,其横坐标为,|PF|等于(  )

(A) (B) (C) (D)

 

【答案】

D

【解析】P(,y),

+y2=1,

解得y2=.

由椭圆方程+y2=1a=2,b=1.

c=,F(-,0),

|PF|=

=

=.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆 +y2=1的左焦点为F,O为坐标原点.

(1)求过点O、F,并且与椭圆的左准线l相切的圆的方程;

(2)设过点F且不与坐标轴垂直的直线交椭圆于A、B两点,线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省宁波市慈溪中学高三(上)期中数学试卷(理科)(解析版) 题型:解答题

设F1、F2分别是椭圆+y2=1的左、右焦点.
(1)若P是该椭圆上的一个动点,求向量乘积的取值范围;
(2)设过定点M(0,2)的直线l与椭圆交于不同的两点M、N,且∠MON为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.
(3)设A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB相交于点D,与椭圆相交于E、F两点.求四边形AEBF面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2012年浙江省温州市高考数学二模试卷(理科)(解析版) 题型:解答题

如图,F1,F2是椭圆+y2=1的左、右焦点,M,N是以F1F2为直径的圆上关于X轴对称的两个动点.
(I)设直线MF1、NF2的斜率分别为k1,k2,求k1•k2值;
(II)直线MF1和NF2与椭圆的交点分别为A,B和C、D.问是若存在实数λ,使得λ(|AB|+|CD|)=|AB|•|CD|恒成立.若存在,求实数λ的值.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年安徽省高三数学冲刺模拟练习试卷(解析版) 题型:解答题

设F1是椭圆+y2=1的左焦点,O为坐标原点,点P在椭圆上,则的取值范围是   

查看答案和解析>>

同步练习册答案