精英家教网 > 高中数学 > 题目详情
13.设函数f(x)=lnx-x+1.
(Ⅰ)分析f(x)的单调性;
(Ⅱ)证明:当x∈(1,+∞)时,1<$\frac{x-1}{lnx}$<x.

分析 (Ⅰ)求出${f^'}(x)=\frac{1-x}{x}(x>0)$,利用导函数的符号,判断函数的单调性.
(Ⅱ)设F(x)=xlnx-x+1,x>1,利用导函数F′(x)=1+lnx-1=lnx,判断函数的单调性,然后最后证明原不等式成立;

解答 解:(Ⅰ)由f(x)=lnx-x+1,有${f^'}(x)=\frac{1-x}{x}(x>0)$,则f(x)在(0,1)上递增,在(1,+∞)递减;
(Ⅱ)证明:当x∈(1,+∞)时,1<$\frac{x-1}{lnx}$<x,即为lnx<x-1<xlnx.
结合(Ⅰ)知,当x>1时f′(x)<0恒成立,即f(x)在(1,+∞)递减,
可得f(x)<f(1)=0,即有lnx<x-1;
设F(x)=xlnx-x+1,x>1,F′(x)=1+lnx-1=lnx,
当x>1时,F′(x)>0,可得F(x)递增,即有F(x)>F(1)=0,
即有xlnx>x-1,则原不等式成立;

点评 本题考查函数的导数的综合应用,函数的单调性以及构造法的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.锐角三角形ABC中,sin(A+B)=$\frac{3}{5}$,sin(A-B)=$\frac{1}{5}$,设AB=3,则AB边上的高为2+$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.求已知点P(5,0)及圆C:x2+y2-4x-8y-5=0,若直线l过点P且被圆C截得的弦AB长是8,则直线 l的方程是x-5=0或7x+24y-35=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知实数x,y满足$\left\{\begin{array}{l}y≥x+2\\ x+y≤6\\ x≥1\end{array}$,其中,则实数$\frac{y}{x+1}$的最小值为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的焦点到渐近线的距离为3,则双曲线C的虚轴长为(  )
A.3B.6C.$2\sqrt{5}$D.$2\sqrt{21}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.直线l将圆x2+y2-2x-4y=0平分,且与直线x+2y=0垂直,则直线l的方程是(  )
A.2x-y=0B.2x-y-2=0C.x+2y-3=0D.x-2y+3=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=sin(x-$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+$\frac{1}{2}$是(  )
A.最小正周期为π的奇函数B.最小正周期为π的偶函数
C.最小正周期为$\frac{π}{2}$的奇函数D.最小正周期为$\frac{π}{2}$的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.假设关于某设备的使用年限x(年)和所支出的维修费用y(万元)有如表的统计资料:
使用年限x(年)23456
维修费用y(万元)2.23.85.56.57.0
若由资料可知y对x呈线性相关关系,试求:
(1)线性回归方程;
(2)根据回归直线方程,估计使用年限为12年时,维修费用是多少?
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.点P在曲线y=x3-x+7上移动,过点P的切线倾斜角的取值范围是(  )
A.[0,π]B.$[0,\frac{π}{2})∪[\frac{3π}{4},π)$C.$[0,\frac{π}{2})∪[\frac{π}{2},π)$D.$[0,\frac{π}{2}]∪[\frac{3π}{4},π)$

查看答案和解析>>

同步练习册答案