精英家教网 > 高中数学 > 题目详情
已知平面向量
a
b
的夹角为
π
3
,且|
b
|=1,|
a
+2
b
|=2
3
,则|
a
|=(  )
A、1
B、
3
C、3
D、2
考点:平面向量数量积的运算
专题:平面向量及应用
分析:由已知将,|
a
+2
b
|=2
3
,两边平方,得到
a
b
的模的等式,解之即可.
解答: 解:由已知,|
a
+2
b
|2=12,即
a
2
+4
a
b
+4
b
2
=12
,所以|
a
|2+4|
a
||
b
1
2
+4=12,所以|
a
|=2;
故选D.
点评:本题考查了向量的模的求法;一般的,要求向量的模,先求向量的平方.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设△ABC中,AD为内角A的平分线,交BC边于点D,|
AB
|=3,|
AC
|=2,∠BAC=60°,则
AD
BC
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何图形的三视图如图所示,则该图形的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的两个焦点,点P是该双曲线和圆x2+y2=a2+b2的一个交点,且△F1PF2的三边成等差数列,则该双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x3-6x2+m(m为常数)在[-2,2]上有最大值1,那么此函数在[-2,2]上的最小值是(  )
A、-39B、-31
C、-7D、以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中相邻两项an与an+1是方程x2+3nx+bn=0的两根,已知a10=-13,则b21等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足约束条件
y≤2x
x+y≤1
y≥-1
,则2x+y的最大值是(  )
A、
4
3
B、3
C、-2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,且
sinA
sinB+sinC
=
b-c
a-c

(1)求角B;
(2)求sinA•cosC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,以M(-1,0)为圆心的圆与直线x-
3
y-3=0相切.
(Ⅰ)求圆M的方程;
(Ⅱ)如果圆M上存在不同两点关于直线mx+y+1=0对称,求m的值;
(Ⅲ)若对圆M上的任意动点P(x,y),求2x+y的取值范围.

查看答案和解析>>

同步练习册答案