精英家教网 > 高中数学 > 题目详情
13.在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2.以AC的中点O为球心、AC为直径的球面交PD于点M
(1)求证:平面ABM⊥平面PCD;
(2)求直线PC与平面ABM所成的角的正弦值.

分析 (1)利用线面、面面垂直的判定定理、性质定理即可证明;
(2)通过建立空间直角坐标系,先求出平面ABM的法向量,进而即可求出线面角.

解答 解:(1)证明:由题意,M在以BD为直径的球面上,则BM⊥PD,
∵PA⊥平面ABCD,∴PA⊥AB,
又∵AB⊥AD,PA∩AD=A,
∴AB⊥平面PAD,∴AB⊥PD,
∵BM∩AB=B,
∴PD⊥平面ABM,又PD?平面PCD,
∴平面ABM⊥平面PCD.
(2)由(1)可知:PD⊥平面ABM,∴PD⊥AM,又在Rt△PAD,PA=AD,∴PM=MD.
如图所示,建立空间直角坐标系,
则A(0,0,0),P(0,0,4),B(2,0,0),C(2,4,0),D(0,4,0),M(0,2,2),
由(1)可知:$\overrightarrow{PD}$是平面ABM的一个法向量$\overrightarrow{PD}$=(0,4,-4),
又$\overrightarrow{PC}$=(2,4,-4),
设PC与平面ABM所成的角为θ,
则sinθ=|cos<$\overrightarrow{PD}$,$\overrightarrow{PC}$>|=$\frac{|\overrightarrow{PD}•\overrightarrow{PC}|}{|\overrightarrow{PD}|•|\overrightarrow{PC}|}$=$\frac{32}{\sqrt{32}•\sqrt{36}}$=$\frac{2\sqrt{2}}{3}$.

点评 熟练掌握线面、面面垂直的判定定理、性质定理及通过建立空间直角坐标系利用平面的法向量与斜向量求出线面角是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系中,已知O为坐标原点,点A的坐标为(a,b),点B的坐标为(cosωx,sinωx),其中ω>0.设f(x)=$\overrightarrow{OA}•\overrightarrow{OB}$.
(Ⅰ)记函数y=f(x)的正的零点从小到大构成数列{an}(n∈N*),当a=$\sqrt{3}$,b=1,ω=2时,求{an}的通项公式与前n项和Sn
(Ⅱ)记函数g(x)=2x,且g(b)=g(a)•g(-2).当x∈R时,设f(x)的值域为M,不等式x2+mx<0的解集为N,若N⊆M,求实数m的最大值;
(Ⅲ)令ω=1,a=t2,b=(1-t)2,若不等式f(θ)-$\sqrt{ab}$>0对任意的t∈[0,1]恒成立,求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给出下列命题
(1)实数的共轭复数一定是实数;
(2)满足|z-i|+|z+i|=2的复数z点的轨迹是椭圆;
(3)若m∈Z,i2=-1,则im+im+1+im+2+im+3=0;
(4)复数Z=a+bi(其中a、in+i-n,n∈Z)的虚部为i.
其中正确命题的序号是(  )
A.(1)B.(2)(3)C.(1)(3)D.(1)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设a,b,c∈R,则“abc=1“是“$\frac{1}{\sqrt{a}}$+$\frac{1}{\sqrt{b}}$+$\frac{1}{\sqrt{c}}$≤a+b+c“的既不充分又不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知不等式$\frac{x-a}{{x}^{2}+x+1}$>$\frac{x+a}{{x}^{2}-x+1}$.
(1)若不等式在R上恒成立,求实数a的取值范围;
(2)是否存在实数a使不等式的解集为(-1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.对具有相关关系的两个变量统计分析的一种常用的方法是(  )
A.回归分析B.相关系数分析C.残差分析D.相关指数分析

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={x|x2-2x>0},B={x|-3<x<3},则(  )
A.A∩B=∅B.A∪B=RC.B⊆AD.A⊆B

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.宜昌市“天地杯”首届中小学生汉语言文化知识电视大赛中,我校经过预赛、复赛、决赛的一路打拼,最终荣获全市一等奖的优异成绩.为选拔选手参加“汉语言文化知识电视大赛”,我校举行了一次“预选赛”活动.为了了解本次预选赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).
(1)求样本容量n和频率分布直方图中的x、y的值;
(2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取4名学生参加“汉语言文化知识电视大赛”,求所抽取的4名学生中至少有一人得分在[90,100]内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)是在R上的奇函数,而且是(0,+∞)上的减函数,证明:f(x)在(-∞,0)上是减函数?

查看答案和解析>>

同步练习册答案