分析 (1)2sin2A+sin2B=sin2C,由正弦定理可得2a2+b2=c2,b=2a=4,c=2$\sqrt{6}$,求出sinC,即可求△ABC的面积;
(2)利用基本不等式求$\frac{{c}^{2}}{ab}$的最小值,并确定此时$\frac{c}{a}$的值.
解答 解:(1)∵2sin2A+sin2B=sin2C,
∴由正弦定理可得2a2+b2=c2,
∵b=2a=4,∴c=2$\sqrt{6}$,
∴cosC=$\frac{4+16-24}{2×2×4}$=-$\frac{1}{4}$,
∴sinC=$\frac{\sqrt{15}}{4}$,
∴△ABC的面积S=$\frac{1}{2}×2×4×\frac{\sqrt{15}}{4}$=$\sqrt{15}$;
(2)2a2+b2=c2≥2$\sqrt{2}$ab,
∴$\frac{{c}^{2}}{ab}$≥2$\sqrt{2}$,即$\frac{{c}^{2}}{ab}$的最小值为2$\sqrt{2}$,
此时b=$\sqrt{2}$a,c=2a,$\frac{c}{a}$=2.
点评 本题考查正弦定理、余弦定理的运用,考查基本不等式,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 制作模型数x(个) | 10 | 20 | 30 | 40 | 50 |
| 花费时间y(分钟) | 64 | 69 | 75 | 82 | 90 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com