精英家教网 > 高中数学 > 题目详情

如图所示的几何体中,平面的中点。

(Ⅰ)求证:

(Ⅱ)设二面角的平面角为,求

(Ⅰ)证明见解析。

(Ⅱ)


解析:

解法一:分别以直线轴、轴、轴,建立如图所示的空间直角坐标系,设,则

所以

(Ⅰ): 

,即

(Ⅱ)解:设平面的法向量为, 

,

得平面的一非零法向量为 ,

又平面BDA的一个法向量为

解法二:

(Ⅰ)证明:如图所示,取的中点,连接,则,

四点共面,

平面,  

平面

(Ⅱ)取的中点,连,则平面

,连,则

是二面角的平面角。

, 的交点为,记,,则有

,在中,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在如图所示的几何体中,平面ACE⊥平面ABCD,四边形ABCD为平行四边形,∠ACB=90°,EF∥BC,AC=BC=
2
,AE=EC=1.
(Ⅰ)求证:AE⊥平面BCEF;
(Ⅱ)求三棱锥D-ACF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•朝阳区一模)在如图所示的几何体中,四边形ABCD为平行四边形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EF=1,BC=
13
,且M是BD的中点.
(Ⅰ)求证:EM∥平面ADF;
(Ⅱ)在EB上是否存在一点P,使得∠CPD最大?若存在,请求出∠CPD的正切值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•吉安二模)如图所示的几何体中,底面ABCD是矩形,AB=9,BC=6,EF∥平面ABCD,EF=3,△ADE和△BCF
都是正三角形,则几何体EFABCD的体积为
63
2
63
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•西城区一模)在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,AC=
3
,AB=2BC=2,AC⊥FB.
(Ⅰ)求证:AC⊥平面FBC;
(Ⅱ)求四面体FBCD的体积;
(Ⅲ)线段AC上是否存在点M,使EA∥平面FDM?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,AE⊥平面ABC,CD∥AE,F是BE的中点,AC=BC=1,∠ACB=90°,AE=2CD=2.
(1)证明:DF⊥平面ABE;
(2)求二面角A-BD-F大小的余弦值.

查看答案和解析>>

同步练习册答案