精英家教网 > 高中数学 > 题目详情

 已知椭圆,设该椭圆上的点到左焦点的最大距离为,到右顶点的最大距离为.

(Ⅰ) 若,求椭圆的方程;

(Ⅱ) 设该椭圆上的点到上顶点的最大距离为,求证:.

 

【答案】

 (Ⅰ)解:

∴椭圆的方程为;…………………………………………………………5分

(Ⅱ)证明:椭圆上任意一点,则点到上顶点的距离为

构造二次函数

其对称轴方程为

,即时,

此时

,从而

,即时,

此时

综上所述椭圆上任意一点到上顶点的距离都小于等于,所以椭圆上的点到上顶点的最大距离.…………………………………………………………………………15分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1,F2,右顶点为A,P是椭圆C1上任意一点,设该双曲线C2:以椭圆C1的焦点为顶点,顶点为焦点,B是双曲线C2在第一象限内的任意一点,且c=
a2-b2

(1)设
PF1
PF2
的最大值为2c2,求椭圆离心率;
(2)若椭圆离心率e=
1
2
时,是否存在λ,总有∠BAF1=λ∠BF1A成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1 (a>b>0)
,设该椭圆上的点到左焦点F(-c,0)的最大距离为d1,到右顶点A(a,0)的最大距离为d2
(Ⅰ) 若d1=3,d2=4,求椭圆E的方程;
(Ⅱ) 设该椭圆上的点到上顶点B(0,b)的最大距离为d3,求证:d3
a2
c

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省宁波市鄞州区高三高考适应性3月考试理科数学 题型:解答题

(本小题满分15分)已知椭圆,设该椭圆上的点到左焦点的最大距离为,到右顶点的最大距离为.

(Ⅰ) 若,求椭圆的方程;

(Ⅱ) 设该椭圆上的点到上顶点的最大距离为,求证:.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海市高三模拟考试理科数学 题型:解答题

.(本题满分16分,其中第1小题4分,第2小题6分,第3小题6分,)

如图,已知椭圆,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线与椭圆的交点分别为.

(1)求椭圆和双曲线的标准方程;

(2)设直线的斜率分别为,证明

(3)是否存在常数,使得

恒成立?若存在,求的值;若不存在,请说明理由.

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案