如图,在四棱锥A-BCDE中,侧面∆ADE是等边三角形,底面BCDE是等腰梯形,且CD∥BE,DE=2,CD=4,
,M是DE的中点,F是AC的中点,且AC=4,
![]()
求证:(1)平面ADE⊥平面BCD;
(2)FB∥平面ADE.
(1)证明详见解析;(2)证明详见解析.
【解析】
试题分析:(1)首先根据直线与平民啊垂直的判定定理证明
平面BCD,
然后再根据平面垂直的判定定理证明平面ADE⊥平面BCD;(2),取DC的中点N,首先证FN∥平面ADE,然后再证∴BN∥平面ADE,再根据平面与平民啊平行的判定定理证明∴平面ADE∥平面FNB,最后由面面平行的性质即可.
试题解析:(1)∵∆ADE是等边三角形,,M是DE的中点,
∴
,
∵在∆DMC中,DM=1,
,CD=4,
∴
,即MC=
.
在∆AMC中,
∴AM⊥MC,
又∵![]()
, ∴
平面BCD,
∵AM
平面ADE, ∴平面ADE⊥平面BCD.
(2)取DC的中点N,连结FN,NB,
∵F,N分别是AC,DC的中点,∴FN∥AD,由因为FN
平面ADE,AD
平面ADE, ∴FN∥平面ADE,
∵N是DC的中点,∴BC=NC=2,又
,∴∆BCN是等边三角形,∴BN∥DE,
由BN
平面ADE,ED
平面ADE, ∴BN∥平面ADE,
∵
, ∴平面ADE∥平面FNB,
∵FB
平面FNB, ∴FB∥平面ADE.
考点:1.直线与平面垂直的判定;2.平面一平面垂直的判定;3.直线与平面平行的判定.
科目:高中数学 来源: 题型:
| π | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 3 |
查看答案和解析>>
科目:高中数学 来源:2014届河南省毕业班阶段测试一理数学卷(解析版) 题型:解答题
如图,在四棱锥A-BCDE中,底面四边形BCDE是等腰梯形,BC∥DE,
=45
,O是BC的中点,AO=
,且BC=6,AD=AE=2CD=2
,
![]()
(1)证明:AO⊥平面BCD;(2)求二面角A-CD-B的平面角的正切值.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年广东省中山市纪念中学高三(上)9月月考数学试卷(理科)(解析版) 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2012-2013学年广东省中山市纪念中学高三(上)9月月考数学试卷(理科)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com