精英家教网 > 高中数学 > 题目详情
18.已知平面向量$\overrightarrow{α}$,$\overrightarrow{β}$满足|β|=1,且$\overrightarrow{α}$与$\overrightarrow{β}$-$\overrightarrow{α}$的夹角为120°,则$\overrightarrow{α}$的模的取值范围为(0,$\frac{2\sqrt{3}}{3}$].

分析 设$\overrightarrow{AB}$=$\overrightarrow{α}$,$\overrightarrow{AC}$=$\overrightarrow{β}$,得到∠ABC=60°由正弦定理得:|$\overrightarrow{α}$|=$\frac{2\sqrt{3}}{3}$sinC≤$\frac{2\sqrt{3}}{3}$,从而求出其范围即可.

解答 解:设$\overrightarrow{AB}$=$\overrightarrow{α}$,$\overrightarrow{AC}$=$\overrightarrow{β}$如图所示:
则由$\overrightarrow{BC}$=$\overrightarrow{β}$-$\overrightarrow{α}$,又∵$\overrightarrow{α}$与$\overrightarrow{β}$-$\overrightarrow{α}$的夹角为120°
∴∠ABC=60°
又由|$\overrightarrow{AC}$|=|$\overrightarrow{β}$|=1
由正弦定理 $\frac{|\overrightarrow{α}|}{sinC}$=$\frac{|\overrightarrow{β}|}{sin60°}$得:
|$\overrightarrow{α}$|=$\frac{2\sqrt{3}}{3}$sinC≤$\frac{2\sqrt{3}}{3}$,
∴|$\overrightarrow{α}$|∈(0,$\frac{2\sqrt{3}}{3}$]
故答案为:(0,$\frac{2\sqrt{3}}{3}$].

点评 本题主考查了向量的加法运算的三角形法则,考查了三角形的正弦定理及三角函数的性质,综合性较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知α∈(0,$\frac{π}{2}$),且tan(α+$\frac{π}{4}$)=3,则lg(8sinα+6cosα)-lg(4sinα-cosα)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.过点(4,-2),倾斜角为120°的直线方程是(  )
A.$\sqrt{3}$x+y+2-4$\sqrt{3}$=0B.$\sqrt{3}$x+3y+6+4$\sqrt{3}$=0C.x+$\sqrt{3}$y-2$\sqrt{3}$-4=0D.x+$\sqrt{3}$y+2$\sqrt{3}$-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设平面直角坐标系中,A(-1,1),B(-1,2),C(-4,1).
(1)求直线BC的一般式方程;
(2)求△ABC的外接圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.空间直角坐标系中A(4,6,-3),则点A关于坐标原点对称点A′的坐标为(-4,-6,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知点A(0,-1),B(3,0),C(1,2),平面区域P是由所有满足$\overrightarrow{AM}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$(2<λ≤m,2<μ≤n)的点M组成的区域,若区域P的面积为16,则m+n的最小值为4+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.Sn为等比数列{an}的前n项和,若S4=S2+2,则S6的最小值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项为Sn,且Sn=$\frac{1}{4}$(an+1)2对于任意n∈N*恒成立.
(1)求{an}的通项公式;
(2)若an>0,设cn=$\frac{{a}_{n}}{{2}^{n}}$,数列{cn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求经过点A(3,2),B(-2,0)的直线方程.

查看答案和解析>>

同步练习册答案