精英家教网 > 高中数学 > 题目详情
如图,在三棱柱ABC-A1B1C1中,每个侧面均为正方形,D为底边AB的中点,E为侧棱CC1的中点,AB1与A1B的交点为O.
(1)求证:CD平面A1EB;
(2)求证:AB1⊥平面A1EB.
证明:(1)设AB1和A1B的交点为O,连接EO,连接OD.
因为O为AB1的中点,D为AB的中点,所以ODBB1OD=
1
2
BB1

又E是CC1中点,
则ECBB1EC=
1
2
BB1
,即ECOD且EC=OD,
则四边形ECOD为平行四边形.所以EOCD.
又CD?平面A1BE,EO?平面A1BE,
则CD平面A1BE.…(7分)
(2)因为三棱柱各侧面都是正方形,所以BB1⊥AB,BB1⊥BC,
所以BB1⊥平面ABC.
因为CD?平面ABC,所以BB1⊥CD.
由已知得AB=BC=AC,所以CD⊥AB.
所以CD⊥平面A1ABB1
由(1)可知EOCD,所以EO⊥平面A1ABB1
所以EO⊥AB1
因为侧面是正方形,所以AB1⊥A1B.
又EO∩A1B=O,EO?平面A1EB,A1B?平面A1EB,
所以AB1⊥平面A1BE.…(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,PA⊥底面ABCD,PA=2
3
,BC=CD=2,∠ACB=∠ACD=
π
3

(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)若侧棱PC上的点F满足PF=7FC,求三棱锥P-BDF的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,棱长为1的正方体ABCD-A1B1C1D1中,
(1)求证:AC⊥平面B1D1DB;
(2)求证:BD1⊥平面ACB1
(3)求三棱锥B-ACB1体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥P-ABCD中,底面ABCD为菱形,且∠BAD=60°,侧面PAD是正三角形,其所在的平面垂直于底面ABCD,点G为AD的中点.
(1)求证:BG⊥面PAD;
(2)E是BC的中点,在PC上求一点F,使得PG面DEF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,PB⊥底面ABCD.底面ABCD为直角梯形,∠ABC=90°,ADBC,AB=AD=PB,BC=2AD.点E在棱PA上,且PE=2EA.
(I)求证:CD⊥平面PBD;
(II)求二面角A-BE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分PC,且分别交AC、PC于D、E两点,又PB=BC,PA=AB.
(Ⅰ)求证:PC⊥平面BDE;
(Ⅱ)若点Q是线段PA上任一点,求证:BD⊥DQ;
(Ⅲ)求线段PA上点Q的位置,使得PC平面BDQ.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=2,O为AC的中点,PO⊥平面ABCD,PO=2,M为PD的中点,
(1)证明:AD⊥平面PAC;
(2)求直线AM与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知某几何体的三视图如下图所示,其中俯视图为正三角形,设D为AA1的中点.
(Ⅰ)作出该几何体的直观图并求其体积;
(Ⅱ)求证:平面BB1C1C⊥平面BDC1
(Ⅲ)BC边上是否存在点P,使AP平面BDC1?若不存在,说明理由;若存在,证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC=BC,点D是AB的中点.
(1)求证:BC1平面CA1D;
(2)求证:平面CA1D⊥平面AA1B1B.

查看答案和解析>>

同步练习册答案