精英家教网 > 高中数学 > 题目详情

已知点A(-1,O),B(1,0),动点M的轨迹曲线C满足∠AMB=2,||·||cos2=3

(Ⅰ)求曲线C的方程;

(Ⅱ)试探究曲线C上是否存在点P,使直线PA与PB的斜率kPA·kPB=1?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点A(1,1)是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上一点,F1,F2是椭圆的两焦点,且满足|AF1|+|AF2|=4.
(I)求椭圆的两焦点坐标;
(II)设点B是椭圆上任意一点,如果|AB|最大时,求证A、B两点关于原点O不对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,1)是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上一点,F1,F2是椭圆的两焦点,且满足|AF1|+|AF2|=4.
(1)求椭圆的两焦点坐标;
(2)设点B是椭圆上任意一点,如果|AB|最大时,求证A、B两点关于原点O不对称;
(3)设点C、D是椭圆上两点,直线AC、AD的倾斜角互补,试判断直线CD的斜率是否为定值?若是定值,求出定值;若不是定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,O),B(1,0),动点M的轨迹曲线C满足∠AMB=2θ,|
AM
|•|
BM
|cos2θ=3

(I)求曲线C的方程;
(II)试探究曲线C上是否存在点P,使直线PA与PB的斜率kPA•kPB=1?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省实验中学高三(下)第一次综合测试数学试卷(文科)(解析版) 题型:解答题

已知点A(-1,O),B(1,0),动点M的轨迹曲线C满足
(I)求曲线C的方程;
(II)试探究曲线C上是否存在点P,使直线PA与PB的斜率kPA•kPB=1?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

查看答案和解析>>

同步练习册答案