精英家教网 > 高中数学 > 题目详情

【题目】设|θ|< ,n为正整数,数列{an}的通项公式an=sin tannθ,其前n项和为Sn
(1)求证:当n为偶函数时,an=0;当n为奇函数时,an=(﹣1) tannθ;
(2)求证:对任何正整数n,S2n= sin2θ[1+(﹣1)n+1tan2nθ].

【答案】
(1)证明:an=sin tannθ,

当n=2k(k∈N*)为偶数时,an=sinkπtannθ=0;

当n=2k﹣1为奇函数时,an= tannθ=(﹣1)k1tannθ=(﹣1) tannθ


(2)证明:a2k1+a2k=(﹣1) tannθ.∴奇数项成等比数列,首项为tanθ,公比为﹣tan2θ.

∴S2n= = sin2θ[1+(﹣1)n+1tan2nθ]


【解析】(1)利用sin = ,即可得出.(2)a2k1+a2k=(﹣1) tannθ.利用等比数列的求和公式即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在斜三梭柱ABC﹣A1B1C1中,侧面AA1C1C是菱形,AC1与A1C交于点O,E是棱AB上一点,且OE∥平面BCC1B1
(1)求证:E是AB中点;
(2)若AC1⊥A1B,求证:AC1⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学调查了某班全部 45 名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)

参加书法社团

未参加书法社团

参加演讲社团

8

5

未参加书法社团

2

30

(1)从该班随机选 1 名同学,求该同学至少参加上述一个社团的概率;

(2)在既参加书法社团又参加演讲社团的 8 名同学中,有 5 名男同学,3名女同学.现从这 5 名男同学和 3 名女同学中各随机选 1 人,求被选中且未被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆O1和圆O2的极坐标方程分别为ρ=2,
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(2)求经过两圆交点的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,一辆汽车从市出发沿海岸一条直公路以的速度向东匀速行驶,汽车开动时,在市南偏东30°方向距的海上处有一快艇与汽车同时出发,要把一份稿件送给这辆汽车的司机.问快艇至少以多大的速度,以什么样的航向行驶才能最快把稿件送到司机手中?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,EBC的中点,F在棱AC上,且AF=3FC

(1)求三棱锥D-ABC的体积

(2)求证:平面DAC⊥平面DEF;

(3)若MDB中点,N在棱AC上,且CN=CA,求证:MN∥平面DEF

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线上的点到点的距离比它到直线的距离小2.

(1)求曲线的方程;

(2)过点且斜率为的直线交曲线两点,若,当时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某市有一条东西走向的公路l,现欲经过公路l上的O处铺设一条南北走向的公路m,在施工过程中发现O处的正北方向1百米的A处有一汉代古迹,为了保护古迹,该市委决定以A为圆心,1百米为半径设立一个圆形保护区,为了连通公路l,m,欲再新建一条公路PQ,点P,Q分别在公路l,m上(点P,Q分别在点O的正东、正北方向),且要求PQ与圆A相切.

(1)当点P距O处2百米时,求OQ的长;

(2)当公路PQ的长最短时,求OQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C,点x轴的正半轴上,过点M的直线与抛物线C相交于AB两点,O为坐标原点.

1)若,且直线的斜率为1,求以AB为直径的圆的方程;

2)是否存在定点M,使得不论直线绕点M如何转动, 恒为定值?

查看答案和解析>>

同步练习册答案