精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中,平面平面.

(1)证明:

(2)若是正三角形,,求二面角的大小.

【答案】(1)见解析(2)

【解析】试题分析:(1)要证线线垂直,可以从线面垂直入手,证得AC⊥平面A1B1C,进而得到AC;(2)利用空间坐标系的方法,求得两个面的法向量,通过向量的夹角的计算得到二面角的大小.

解析:

(Ⅰ)过点B1A1C的垂线垂足为O

由平面A1B1C平面AA1C1C平面A1B1C平面AA1C1CA1C

B1O平面AA1C1C

AC平面AA1C1CB1OAC

BAC=90°,ABA1B1A1B1AC

B1OA1B1B1AC平面A1B1C

CA1平面A1B1CACCA1

(Ⅱ)以C为坐标原点,的方向为x轴正方向,||为单位长,建立空间直角坐标系C-xyz

由已知可得A(1,0,0),A1(0,2,0),B1(0,1,).

所以=(1,0,0),=(-1,2,0),=(0,-1,).

n=(xyz)是平面A1AB的法向量,则

可取n=(2,1).

m=(xyz)是平面ABC的法向量,则

可取m=(0,,1).

cosnm

又因为二面角A1-AB-C为锐二面角,

所以二面角A1-AB-C的大小为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生平均每天课外体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)

将学生日均课外体育锻炼时间在的学生评价为“课外体育达标”.

(1)请根据上述表格中的统计数据填写下面的列联表;

课外体育不达标

课外体育达标

合计

20

110

合计

(2)通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?

参考格式:,其中

0.025

0.15

0.10

0.005

0.025

0.010

0.005

0.001

5.024

2.072

6.635

7.879

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形,平面平面的中点,上一点,于点.

(1)证明:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,以为顶点的六面体中,均为等边三角形,,且平面平面平面的中点,连接.

(Ⅰ)求证:

(Ⅱ)求证:平面

(Ⅲ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,

侧棱平面为等腰直角三角形,,且分别是的中点.

Ⅰ)求证:平面

平面

Ⅱ)求直线与平面所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 平面 平面 是等边三角形,

的中点.

(1)求证:

(2)若直线与平面所成角的正切值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆 ,长轴的右端点与抛物线 的焦点重合,且椭圆的离心率是

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过作直线交抛物线 两点,过且与直线垂直的直线交椭圆于另一点,求面积的最小值,以及取到最小值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系曲线的参数方程为是参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系直线的极坐标方程为

(1)求的直角坐标方程和的普通方程

(2)相交于两点设点上异于的一点面积最大时求点的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的左右焦点分别为关于直线的对称点在直线上.

(1)求椭圆的离心率;

(2)若过焦点垂直轴的直线被椭圆截得的弦长为,斜率为的直线交椭圆于两点,问是否存在定点,使得的斜率之和为定值?若存在,求出所有满足条件的点坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案