设f(x)是定义在R上的减函数,满足f(x+y)=f(x)·f(y)且f(0)=1,数列{an}满足a1=4,f(log3
)f(-1-log3
)=1(n∈N*);
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设Sn是数列{an}的前n项和,试比较Sn与6n2-2的大小.
|
(Ⅰ)由题设知f(log3 ∴ ∴数列 (Ⅱ)Sn=a1+a2+a3+···+an=4(1+31+32+···+3n-1)=2(3n-1) 当n=1时有Sn=6n2-2=4;当n=2时有Sn=16<6n2-2=22;当n=3时有Sn=6n2-2=52; 当n=4时有Sn=160>6n2-2=94;当n=5时有Sn=484>6n2-2=148. 由此猜想当n≥4时,有Sn>6n2-2 n≥4时, (2n2-4n+3)-n2=(n-1)n-3)>0,即3n-1>n2. 综上:(1)n=1,3时,Sn=6n2-2 (2)n=2时,Sn<6n2-2. (3)n≥4时,Sn>6n2-2 12分 |
科目:高中数学 来源: 题型:
(01全国卷理)(14分)
设f (x) 是定义在R上的偶函数,其图像关于直线x = 1对称.对任意x1,x2∈[0,
]都有f (x1+x2) = f (x1) ? f (x2).且f (1) = a>0.
(Ⅰ)求f (
) 及f (
);
(Ⅱ)证明f (x) 是周期函数;
(Ⅲ)记an = f (2n+
),求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)当f(x)=1时,求g(x);
(2)当f(x)=x时,求g(x).
查看答案和解析>>
科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练7练习卷(解析版) 题型:填空题
设f(x)是定义在R上且周期为2的函数,在区间[-1,1]上,f(x)=
其中a,b∈R.若f
=f
,则a+3b的值为 .
查看答案和解析>>
科目:高中数学 来源:2011-2012学年宁夏高三第一次模拟考试文科数学试卷 题型:选择题
设f(x)是定义在R上的偶函数,对x∈R,都有f(x+4)=f(x),且当x∈[-2,0]时,f(x)=(
)x-1,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是
A.(1,2) B. (2,+∞) C. (1,
) D. (
,2)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com