精英家教网 > 高中数学 > 题目详情
17.若全集U={1,2,3,4,5},A={2,4,5},B={1,2,5},则(∁UA)∩B=(  )
A.{2,5}B.{1,3,4}C.{1,2,4,5}D.{1}

分析 先求出CUA,由此利用交集定义能求出(∁UA)∩B.

解答 解:∵全集U={1,2,3,4,5},A={2,4,5},B={1,2,5},
∴(∁UA)∩B={1,3}∩{1,2,5}={1}.
故选:D.

点评 本题考查补集、交集的求法,是基础题,解题时要认真审题,注意补集、交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知抛物线y2=2px(p>0),过焦点F,且倾斜角为60°的直线与抛物线交于A,B两点,若|AF|=6,则|BF|=2或18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列说法错误的是(  )
A.在△ABC中,若A>B,则cosA<cosB
B.若b2=ac,则a,c的等比中项为b
C.若命题p与p∧q为真,则q一定为真
D.若p:?x∈(0,+∞),lnx<x-1,则¬p:?x∈(0,+∞),lnx≥x-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,圆A的半径为1,且A点的坐标为(0,1),B为圆上的动点,角α的始边为射线AO,终边为射线AB,过点B作x轴的垂线,垂足为C,将BC表示成α的函数f(α),则y=f(α)在[0,2π]的在图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$f(x)=\sqrt{3}sinxcos({x+\frac{π}{6}})+cosxsin({x+\frac{π}{3}})+\sqrt{3}{cos^2}x-\frac{{\sqrt{3}}}{2}$.
(Ⅰ)当$x∈({0,\frac{π}{2}})$时,求f(x)的值域;
(Ⅱ)已知$\frac{π}{12}<α<\frac{π}{3}$,$f(α)=\frac{6}{5}$,$-\frac{π}{6}<β<\frac{π}{12}$,$f(β)=\frac{10}{13}$,求cos(2α-2β).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知a,b是两个不相等的实数,集合A={a2-4a,-1},B={b2-4b+1,-2},若映射f:x→x表示将集合A中的元素x映射到集合B中仍然为x,则a+b等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)={x^{-{k^2}+k+2}}$(k∈Z)在(0,+∞)上为增函数.
(1)求k值,并写出相应的f(x)的解析式;
(2)对于(1)中得到的函数f(x),试判断是否存在正实数m,使得函数g(x)=1-mf(x)+(2m-1)x在区间[-1,2]上的值域为$[-4,\frac{17}{8}]$?若存在,求出m值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点P(2,0)及圆C:x2+y2-6x+4y+4=0.
(1)若直线l过点P且与圆心C的距离为1,求直线l的方程.
(2)设直线ax-y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线(6m2+3m-3)x+(m2+m)y-4m+1=0与直线x-2y+6=0的夹角为arctan3,求实数m的值.

查看答案和解析>>

同步练习册答案