精英家教网 > 高中数学 > 题目详情
在正方体ABCDA1B1C1D1中,点E为BB1的中点,则平面A1ED与平面ABCD所成的锐二面角的余弦值为________.
以A为原点建立平面直角坐标系,设棱长为1,则A1(0,0,1),E,D(0,1,0),∴=(0,1,-1),
设平面A1ED的法向量为n1=(1,y,z),
n1=(1,2,2).∵平面ABCD的一个法向量为n2=(0,0,1),∴cos〈n1n2〉=.即所成的锐二面角的余弦值为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

四棱锥P—ABCD的底面是边长为2的菱形,∠DAB=60°,侧棱,M、N两点分别在侧棱PB、PD上,.

(1)求证:PA⊥平面MNC。
(2)求平面NPC与平面MNC的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直四棱柱ABCD-A1B1C1D1中,AA1=2,底面是边长为1的正方形,E、F分别是棱B1B、DA的中点.
(1)求二面角D1-AE-C的大小;
(2)求证:直线BF∥平面AD1E.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面是直角梯形,平面分别为的中点,

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在圆锥PO中,已知PO=,☉O的直径AB=2,C是的中点,D为AC的中点.

求证:平面POD⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四棱锥PABCD的底面ABCD为一直角梯形,其中BAADCDADCDAD=2ABPA⊥底面ABCDEPC的中点.
 
(1)求证:BE∥平面PAD
(2)若BE⊥平面PCD,求平面EBD与平面BDC夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,圆锥的高PO=4,底面半径OB=2,D为PO的中点,E为母线PB的中点,F为底面圆周上一点,满足EF⊥DE.

(1)求异面直线EF与BD所成角的余弦值;
(2)求二面角OOFE的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在空间直角坐标系中,点与点的距离为               .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线的方向向量为,平面的法向量为,则能使//的是(    )
A.==
B.==
C.==
D.==

查看答案和解析>>

同步练习册答案