精英家教网 > 高中数学 > 题目详情
14.已知圆C:x2+y2-4x-14y+45=0及点Q(-2,3).
(1)若M为圆C上任一点,求|MQ|的最大值和最小值;
(2)若实数m,n满足m2+n2-4m-14n+45=0,求k=$\frac{n-3}{m+2}$的最大值和最小值.

分析 (1)求出|QC|,即可求|MQ|的最大值和最小值;
(2)由题意,(m,n)是圆C上一点,k表示圆上任意一点与(-2,3)连线的斜率,设直线方程为y-3=k(x+2),直线与圆C相切时,k取得最值.

解答 解:(1)圆C:x2+y2-4x-14y+45=0可化为(x-2)2+(y-7)2=8,圆心坐标为C(2,7),半径r=2$\sqrt{2}$,
|QC|=$\sqrt{(2+2)^{2}+(7-3)^{2}}$=4$\sqrt{2}$,|MQ|max=4$\sqrt{2}$+2$\sqrt{2}$=6$\sqrt{2}$,|MQ|min=4$\sqrt{2}-2\sqrt{2}$=2$\sqrt{2}$;
(2)由题意,(m,n)是圆C上一点,k表示圆上任意一点与(-2,3)连线的斜率,
设直线方程为y-3=k(x+2),直线与圆C相切时,k取得最值,即$\frac{|2k-7+2k+3|}{\sqrt{{k}^{2}+1}}$=2$\sqrt{2}$,
∴k=2$±\sqrt{3}$,
∴k的最大值为2+$\sqrt{3}$,最小值为2-$\sqrt{3}$.

点评 本题考查直线与圆的位置关系,考查点到直线的距离公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,△PCD为等边三角形,底面ABCD为直角梯形,AB⊥AD,AD∥BC,AD=2BC=2,AB=$\sqrt{3}$,点E、F分别为AD、CD的中点.
(1)求证:直线BE∥平面PCD;
(2)求证:平面PAF⊥平面PCD;
(3)若PB=$\sqrt{3}$,求直线PB与平面PAF所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.Sn为数列{an}的前n项和,已知an>0,an2+an=2Sn
(1)求数列{an}的通项公式;
(2)若bn=$\frac{{a}_{n}}{{2}^{{a}_{n-1}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设a,b∈R,集合A={1,a+b,a},B={0,$\frac{b}{a}$,b},若A=B,则b-a(  )
A.2B.-1C.1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,在透明塑料制成的长方体ABCD-A1B1C1D1容器内灌进一些水,将容器底面一边BC固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:
①水的部分始终呈棱柱状;
②水面四边形EFGH的面积不改变;
③棱A1D1始终与水面EFGH平行;
④当E∈AA1时,AE+BF是定值.其中正确说法的是(  )
A.②③④B.①②④C.①③④D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=x2-2lnx
(I)求f(x)的单调区间;
(II)求f(x)在$[{\frac{1}{e},e}]$上的最大值和最小值;
(III)若关于x的方程f(x)=x2-x-a在区间[1,3]上恰好有两个相异的实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.“2<m<6”是“方程$\frac{{x}^{2}}{m-2}$+$\frac{{y}^{2}}{6-m}$=1表示椭圆”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不必要也不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X,则X的均值E(X)=$\frac{6}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知直线经过点P(1,2),且与直线y=2x+3平行,则该直线方程为y=2x.

查看答案和解析>>

同步练习册答案