精英家教网 > 高中数学 > 题目详情
精英家教网设经过双曲线x2-
y2
3
=1
的左焦点F1作倾斜角为
π
6
的直线与双曲线左右两支分别交于点A,B.求
(I)线段AB的长;
(II)设F2为右焦点,求△F2AB的周长.
分析:(I)求出双曲线的焦点坐标,求出直线的斜率,利用点斜式求出直线方程;将直线的方程代入双曲线的方程,利用两点的距离公式求出|AB|.
(II)利用焦半径公式求出|F2A|,|F2B|;利用韦达定理求出)|F2A|,|F2B|的和,求出三角形的周长.
解答:解:(I)F1(-2,0)
k=tan
π
6
=
3
3

设A(x1,y1)B(x2,y2
将直线AB:y=
3
3
(x+2)
代入3x2-y2-3=0
整理得8x2-4x-13=0
由距离公式|AB|=
1+k2
8
=3(6分)
(II)|F2A|=2x1-1,|F2B|=1-2x2
|F2A|+|F2B|=2(x1-x2)=2•
(x1+x2)2-4x1x2
=2•
3
2
3
=3
3

F2AB的周长L=3+3
3
(12分)
点评:解决直线与圆锥曲线的弦长问题常将直线的方程与圆锥曲线方程联立,利用弦长公式|AB|=
1+k2
8
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以正方形ABCD的相对顶点A、C为焦点的椭圆,恰好过正方形四边的中点,则该椭圆的离心率为
10
-
2
2
10
-
2
2
;设F1和F2为双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的两个焦点,若F1,F2,P(0,2b)是正三角形的三个顶点,则双曲线的离心率为
2
2
;经过抛物线y=
1
4
x2
的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,若y1+y2=5,则线段AB的长等于
7
7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)经过点P(4,
15
),且双曲线C的渐近线与圆x2+(y-3)2=4相切.
(1)求双曲线C的方程;
(2)设F(c,0)是双曲线C的右焦点,M(x0,y0)是双曲线C的右支上的任意一点,试判断以MF为直径的圆与以双曲线实轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年北京十八中高二(上)期末数学试卷(理科)(解析版) 题型:填空题

以正方形ABCD的相对顶点A、C为焦点的椭圆,恰好过正方形四边的中点,则该椭圆的离心率为    ;设F1和F2为双曲线(a>0,b>0)的两个焦点,若F1,F2,P(0,2b)是正三角形的三个顶点,则双曲线的离心率为    ;经过抛物线y=的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,若y1+y2=5,则线段AB的长等于   

查看答案和解析>>

同步练习册答案