精英家教网 > 高中数学 > 题目详情
sinα+cosα=
1
2
,则tanα+cotα等于(  )
分析:由已知中sinα+cosα=
1
2
,两边平方后,根据sin2α+cos2α=1,可求出sinα•cosα的值,将tanα+cotα切化弦并通分后,结合sinα•cosα的值,即可得到答案.
解答:解:∵sinα+cosα=
1
2

∴(sinα+cosα)2=1+2sinα•cosα=
1
4

∴sinα•cosα=-
3
8

∴tanα+cotα
=
sinα
cosα
+
cosα
sinα
=
sin2α+cos2α
sinα•cosα

=
1
sinα•cosα
=-
8
3

故选:D.
点评:本题考查的知识点是同角三角函数的基本关系的运用,其中sin2α+cos2α=1,在三角函数求值,化简中具有重要作用,是三角函数中最重要的公式之一.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

sinα+cosαsinα-cosα
=3,tan(α-β)=2,则tan(β-2α)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

sinθ+cosθ=
6
3
,θ∈(0,π),则cosθ-sinθ
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

sinθ+cosθ=
2
,则tan(θ+
π
3
)
的值是(  )
A、2-
3
B、-2-
3
C、2+
3
D、-2+
3

查看答案和解析>>

科目:高中数学 来源: 题型:

有以下4个结论:①若sinα+cosα=1,那么sinnα+cosnα=1; ②x=
1
8
π
是函数y=sin (2x+
5
4
π)
的一条对称轴; ③y=cosx,x∈R在第四象限是增函数; ④函数y=sin (
3
2
π+x)
是偶函数;  其中正确结论的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

sinθ+cosθ<-
5
4
,且sinθ-cosθ<0,则tanθ
(  )

查看答案和解析>>

同步练习册答案