精英家教网 > 高中数学 > 题目详情
直线x+y-1=0关于直线x-2=0对称的直线方程为(    )

A.x-y-2=0           B.x-y-3=0              C.x-y+2=0           D.x-y+5=0

解析:本题求直线关于直线的对称直线问题,方法比较多.

方法一:设P(x,y)是所求直线上任意一点,则P关于直线x-2=0的对称点为P′(4-x,y)代入已知直线方程可得;方法二:图像法:观察图像可知直线过点(3,0),斜率为1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

35、已知偶函数y=f(x)(x∈R)在区间[-1,0]上单调递增,且满足f(1-x)+f(1+x)=0,给出下列判断:(1)f(5)=0;(2)f(x)在[1,2]上减函数;(3)f(x)的图象关与直线x=1对称;(4)函数f(x)在x=0处取得最大值;(5)函数y=f(x)没有最小值,其中正确的序号是
(1)(2)(4)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省孝感高中高三(上)9月调考数学试卷(理科)(解析版) 题型:填空题

已知偶函数y=f(x)(x∈R)在区间[-1,0]上单调递增,且满足f(1-x)+f(1+x)=0,给出下列判断:(1)f(5)=0;(2)f(x)在[1,2]上减函数;(3)f(x)的图象关与直线x=1对称;(4)函数f(x)在x=0处取得最大值;(5)函数y=f(x)没有最小值,其中正确的序号是    

查看答案和解析>>

科目:高中数学 来源:2011年陕西省西安市西工大附中高考数学六模试卷(解析版) 题型:填空题

已知偶函数y=f(x)(x∈R)在区间[-1,0]上单调递增,且满足f(1-x)+f(1+x)=0,给出下列判断:(1)f(5)=0;(2)f(x)在[1,2]上减函数;(3)f(x)的图象关与直线x=1对称;(4)函数f(x)在x=0处取得最大值;(5)函数y=f(x)没有最小值,其中正确的序号是    

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京市高三(下)毕业班冲刺训练数学试卷2(理科)(解析版) 题型:解答题

已知偶函数y=f(x)(x∈R)在区间[-1,0]上单调递增,且满足f(1-x)+f(1+x)=0,给出下列判断:(1)f(5)=0;(2)f(x)在[1,2]上减函数;(3)f(x)的图象关与直线x=1对称;(4)函数f(x)在x=0处取得最大值;(5)函数y=f(x)没有最小值,其中正确的序号是    

查看答案和解析>>

科目:高中数学 来源:2011年高三数学单元检测:函数(4)(解析版) 题型:解答题

已知偶函数y=f(x)(x∈R)在区间[-1,0]上单调递增,且满足f(1-x)+f(1+x)=0,给出下列判断:(1)f(5)=0;(2)f(x)在[1,2]上减函数;(3)f(x)的图象关与直线x=1对称;(4)函数f(x)在x=0处取得最大值;(5)函数y=f(x)没有最小值,其中正确的序号是    

查看答案和解析>>

同步练习册答案