精英家教网 > 高中数学 > 题目详情

【题目】某学校的特长班有名学生,其中有体育生名,艺术生名,在学校组织的一次体检中,该班所有学生进行了心率测试,心率全部介于次/分到次/分之间.现将数据分成五组,第一组,第二组,…,第五章,按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前三组的频率之比为.

(1)求的值并求这名同学心率的平均值

(2)因为学习专业的原因,体育生常年进行系统的身体锻炼,艺术生则很少进行系统的身体锻炼,若从第一组和第二组的学生中随机抽取一名,该学生是体育生的概率为,请将下面的列联表补充完整,并判断是否有的把握认为心率小于次/分与常年进行系统的身体锻炼有关?说明你的理由.

心率小于60次/分

心率不小于60次/分

合计

体育生

20

艺术生

30

合计

50

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中.

【答案】(1)1,63.7;(2)有的把握认为心率小于次/分与常年进行系统的身体锻炼有关

【解析】试题分析:(1)求出各组的频数,即可求a的值和50名同学的心率平均值
(2)列出二联表,代入公式求做出判断即可.

试题解析:

(Ⅰ)因为第二组数据的频率为,故第二组的频数为,所以第一组的频数为,第三组的频数为20,第四组的频数为16,第五组的数为4.所以 ,故.

这50名同学的心率平均值为 .

(Ⅱ)由(Ⅰ)知,第一组和第二组的学生(即心率小于60次/分的学生)共10名,从而体育生有名,故列联表补充如下.

心率小于60次/分

心率不小于60次/分

合计

体育生

8

12

20

艺术生

2

28

30

合计

10

40

50

所以

故有99.5%的把握认为心率小于60次/分与常年进行系统的身体锻炼有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四面体S﹣ABC中,SA⊥平面ABC,∠BAC=120°,SA=AC=2,AB=1,则该四面体的外接球的表面积为

A. 11π B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[2018·石家庄一检]已知函数

(1)若,求函数的图像在点处的切线方程;

(2)若函数有两个极值点,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形,平面平面的中点,上一点,于点.

(1)证明:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知曲线的参数方程为,(为参数,且),曲线的极坐标方程为

)求的极坐标方程与的直角坐标方程.

)若上任意一点,过点的直线于点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,以为顶点的六面体中,均为等边三角形,,且平面平面平面的中点,连接.

(Ⅰ)求证:

(Ⅱ)求证:平面

(Ⅲ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,

侧棱平面为等腰直角三角形,,且分别是的中点.

Ⅰ)求证:平面

平面

Ⅱ)求直线与平面所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆 ,长轴的右端点与抛物线 的焦点重合,且椭圆的离心率是

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过作直线交抛物线 两点,过且与直线垂直的直线交椭圆于另一点,求面积的最小值,以及取到最小值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在以为顶点的五面体中,平面平面,四边形为平行四边形,且.

(1)求证:

(2)若,直线与平面所成角为,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案