14£®ÒÑÖªÔ²C1µÄÔ²ÐÄÔÚ×ø±êÔ­µãO£¬ÇÒÇ¡ºÃÓëÖ±Ïßl1£ºx-2y+3$\sqrt{5}$=0ÏàÇУ¬µãAΪԲÉÏÒ»¶¯µã£¬AM¡ÍxÖáÓÚµãM£¬ÇÒ¶¯µãNÂú×ã$\overrightarrow{ON}=\frac{2}{3}\overrightarrow{OA}+£¨{\frac{{2\sqrt{2}}}{3}-\frac{2}{3}}£©\overrightarrow{OM}$£¬É趯µãNµÄ¹ì¼£ÎªÇúÏßC£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÈôÖ±ÏßlÓëÍÖÔ²CÏཻÓÚ²»Í¬Á½µãA£¬B£¬ÇÒÂú×ã$\overrightarrow{OA}¡Í\overrightarrow{OB}$£¨OÎª×ø±êÔ­µã£©£¬ÇóÏß¶ÎAB³¤¶ÈµÄȡֵ·¶Î§£®

·ÖÎö £¨¢ñ£©Éè³ö¶¯µãN£¨x£¬y£©£¬A£¨x0£¬y0£©£¬M£¨x0£¬0£©£¬ÓÉÌâÒâÇóÔ²C1µÄ·½³Ì£¬½áºÏÒÑÖª$\overrightarrow{ON}=\frac{2}{3}\overrightarrow{OA}+£¨{\frac{{2\sqrt{2}}}{3}-\frac{2}{3}}£©\overrightarrow{OM}$£¬°ÑAµÄ×ø±êÓÃNµÄ×ø±ê±íʾ£¬´úÈëÔ²µÄ·½³ÌÇóµÃÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©¼ÙÉèÖ±ÏßlµÄбÂÊ´æÔÚʱ£¬ÉèÆä·½³ÌΪy=kx+m£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÀûÓÃ$\overrightarrow{OA}•\overrightarrow{OB}=0$£¬½áºÏ¸ùԡϵÊýµÄ¹ØÏµµÃµ½3m2=8k2+8£®ÔÙÀûÓÃÏÒ³¤¹«Ê½ÇóµÃÏÒABµÄ³¤£¬ÀûÓûù±¾²»µÈʽ¼°º¯ÊýµÄÐÔÖÊÇóµÃ|AB|µÄ·¶Î§£»ÈôÖ±ÏßlµÄбÂʲ»´æÔÚ£¬Ö±½ÓÇó³öA£¬BµÄ×ø±êµÃµ½|AB|µÄÖµ£¬ÔòÏß¶ÎAB³¤¶ÈµÄȡֵ·¶Î§¿ÉÇó£®

½â´ð ½â£º£¨¢ñ£©É趯µãN£¨x£¬y£©£¬A£¨x0£¬y0£©£¬
¡ßAM¡ÍxÖáÓÚµãM£¬¡àM£¨x0£¬0£©£¬
ÉèÔ²C1 µÄ·½³ÌΪx2+y2=r2£¬ÓÉÌâÒâµÃ$r=\frac{|3\sqrt{5}|}{\sqrt{1+4}}=3$£¬
¡àÔ²C1 µÄ·½³ÌΪx2+y2=9£®
ÓÉÌâÒ⣬$\overrightarrow{ON}=\frac{2}{3}\overrightarrow{OA}+£¨{\frac{{2\sqrt{2}}}{3}-\frac{2}{3}}£©\overrightarrow{OM}$£¬µÃ$£¨x£¬y£©=\frac{2}{3}£¨{x}_{0}£¬{y}_{0}£©+£¨\frac{2\sqrt{2}}{3}-\frac{2}{3}£©£¨{x}_{0}£¬0£©$£¬
¡à$\left\{\begin{array}{l}{x=\frac{2\sqrt{2}}{3}{x}_{0}}\\{y=\frac{2}{3}{y}_{0}}\end{array}\right.$£¬¼´$\left\{\begin{array}{l}{{x}_{0}=\frac{3}{2\sqrt{2}}x}\\{{y}_{0}=\frac{3}{2}y}\end{array}\right.$£¬
½«A£¨$\frac{3}{2\sqrt{2}}x£¬\frac{3}{2}y$£©´úÈëx2+y2=9£¬µÃ¶¯µãNµÄ¹ì¼£·½³ÌΪ$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$£»
£¨¢ò£©£¨1£©¼ÙÉèÖ±ÏßlµÄбÂÊ´æÔÚ£¬ÉèÆä·½³ÌΪy=kx+m£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}+2{y}^{2}=8}\end{array}\right.$£¬¿ÉµÃ£¨1+2k2£©x2+4kmx+2m2-8=0£®
¡à¡÷=64k2-8m2+32£¾0£®
${x}_{1}+{x}_{2}=-\frac{4km}{1+2{k}^{2}}£¬{x}_{1}{x}_{2}=\frac{2{m}^{2}-8}{1+2{k}^{2}}$£¬£¨*£©
¡ß$\overrightarrow{OA}¡Í\overrightarrow{OB}$£¬¡à$\overrightarrow{OA}•\overrightarrow{OB}=0$£¬Ôòx1x2+£¨kx1+m£©£¨kx2+m£©=0£¬
»¯¼ò¿ÉµÃ£¬$£¨{k}^{2}+1£©{x}_{1}{x}_{2}+km£¨{x}_{1}+{x}_{2}£©+{m}^{2}=0$£®
½«£¨*£©´úÈë¿ÉµÃ3m2=8k2+8£®
ÓÖ¡ß|AB|=$\sqrt{1+{k}^{2}}|{x}_{1}-{x}_{2}|=\sqrt{1+{k}^{2}}\frac{\sqrt{64{k}^{2}-8{m}^{2}32}}{1+2{k}^{2}}$£®
½«${m}^{2}=\frac{8}{3}£¨{k}^{2}+1£©$´úÈ룬¿ÉµÃ$|AB|=\sqrt{1+{k}^{2}}•\frac{\sqrt{\frac{2¡Á64{k}^{2}}{3}+\frac{32}{3}}}{1+2{k}^{2}}$=$\sqrt{\frac{32}{3}}•\sqrt{1+\frac{{k}^{2}}{1+4{k}^{4}+4{k}^{2}}}$
=$\sqrt{\frac{32}{3}}•\sqrt{1+\frac{1}{\frac{1}{{k}^{2}}+4{k}^{2}+4}}$$¡Ü2\sqrt{3}$£®
¡àµ±ÇÒ½öµ±${k}^{2}=\frac{1}{2}$£¬¼´$k=¡À\frac{\sqrt{2}}{2}$ʱµÈºÅ³ÉÁ¢£®
ÓÖÓÉ$\frac{{k}^{2}}{1+4{k}^{4}+4{k}^{2}}¡Ý0$£¬¡à|AB|$¡Ý\sqrt{\frac{32}{3}}=\frac{4\sqrt{6}}{3}$£®
¡à$\frac{4\sqrt{6}}{3}¡Ü|AB|¡Ü2\sqrt{3}$£®
£¨2£©ÈôÖ±ÏßlµÄбÂʲ»´æÔÚ£¬ÔòOAËùÔÚÖ±Ïß·½³ÌΪy=x£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=x}\\{{x}^{2}+2{y}^{2}=8}\end{array}\right.$£¬½âµÃA£¨$\frac{2\sqrt{6}}{3}£¬\frac{2\sqrt{6}}{3}$£©£¬
ͬÀíÇóµÃB£¨$\frac{2\sqrt{6}}{3}£¬-\frac{2\sqrt{6}}{3}$£©£¬
ÇóµÃ$|AB|=\frac{4\sqrt{6}}{3}$£®
×ÛÉÏ£¬µÃ$\frac{4\sqrt{6}}{3}¡Ü|AB|¡Ü2\sqrt{3}$£®

µãÆÀ ±¾ÌâÊÇÖ±ÏßÓëÔ²£¬Ö±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÌ⣬¿¼²éÖ±ÏߺÍÔ²µÄλÖùØÏµ£¬¿¼²éÁËÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬ÑµÁ·ÁËÏòÁ¿ÔÚÇó½âÖ±ÏßÓëÔ²×¶ÇúÏßÎÊÌâÖеÄÓ¦Ó㬿¼²éÁËÏÒ³¤¹«Ê½µÄÔËÓã¬ÑµÁ·ÁËÀûÓò»µÈʽÇó½â×îÖµÎÊÌ⣬×ÛºÏÐÔÇ¿£¬ÄѶȽϴó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®º¯Êýy=2tan£¨2x+$\frac{¦Ð}{4}$£©µÄͼÏóµÄ¶Ô³ÆÖÐÐÄÊÇ£¨$\frac{2k-1}{8}$¦Ð£¬0£©£¬k¡Êz£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®f£¨x£©=|x2-a|+$\frac{a}{{x}^{2}}$¶ÔÒ»ÇÐx¡Ù0£¬²»µÈʽf£¨x£©¡Ý1ºã³ÉÁ¢£¬ÇóaµÄ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖª¶þ´Îº¯Êýf£¨x£©=ax2-£¨3a-b£©x+c£¬ÆäÖÐa£¾0£¬f£¨1£©=-a£¬Èôº¯Êýy=f£¨x£©ÓëxÖáÓÐÁ½¸ö½»µãA£¨x1£¬0£©¡¢B£¨x2£¬0£©£¬ÆäÖÐx1¡Ê£¨-1£¬$\frac{1}{2}$£©£¬x2∉£¨-1£¬$\frac{1}{2}$£©£»
£¨1£©ÇóÖ¤£º-$\frac{1}{2}$£¼$\frac{b}{a}$£¼$\frac{5}{2}$£»
£¨2£©Èôº¯Êýy=f£¨x£©µÄ¶¥µãΪC£¬µ±|AB|È¡µÃ×îСֵʱ£¬¡÷ABCΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬Çó´ËʱµÄ¶þ´Îº¯Êýy=f£¨x£©µÄ½âÎöʽ£®
£¨3£©µ±x¡Ê[0£¬1]ʱ£¬º¯Êýy=f£¨x£©µÄ×îСֵΪ-$\frac{5}{8}$b£¬Çó$\frac{b}{a}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªµãÁÐT£ºP1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬¡­Pk£¨xk£¬yk£© £¨k¡ÊN*£¬k¡Ý2£©Âú×ãP1£¨1£¬1£©£¬$\left\{\begin{array}{l}{{x}_{i}={x}_{i-1}+1}\\{{y}_{i}={y}_{i-1}}\end{array}\right.$Óë$\left\{\begin{array}{l}{{x}_{i}={x}_{i-1}}\\{{y}_{i}={y}_{i-1}+1}\end{array}\right.$£¨i=2£¬3£¬4¡­k£©ÖÐÓÐÇÒÖ»ÓÐÒ»¸ö³ÉÁ¢£®
£¨1£©Ð´³öÂú×ãk=4µÄËùÓеãÁУ»
£¨2£©Ö¤Ã÷£º¶ÔÓÚÈÎÒâ¸ø¶¨µÄk£¨k¡ÊN*£¬k¡Ý2£©£¬²»´æÔÚµãÁÐT£¬Ê¹µÃ$\sum_{i=1}^{k}{x}_{i}$+$\sum_{i=1}^{k}{y}_{i}$=2k£»
£¨3£©µ±k=2n-1ÇÒP2n-1£¨n£¬n£©£¨n¡ÊN*£¬n¡Ý2£©Ê±£¬Çó$\sum_{i=1}^{k}{x}_{i}¡Á\sum_{i=1}^{k}{y}_{i}$ µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¹ýµã£¨1£¬$\frac{\sqrt{3}}{2}$£©£¬ÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬¹ýÍÖÔ²ÓÒ¶¥µãAµÄÁ½ÌõбÂʳ˻ýΪ-$\frac{1}{4}$µÄÖ±Ïß·Ö±ð½»ÍÖÔ²CÓÚM£¬NÁ½µã£®
£¨I£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©Ö±ÏßMNÊÇ·ñ¹ý¶¨µãD£¿Èô¹ý¶¨µãD£¬Çó³öµãDµÄ×ø±ê£»Èô²»¹ý£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬¶¯µãP£¨x£¬y£©Ó붨µãA£¨-2£¬0£©£¬B£¨2£¬0£©Á¬ÏßµÄбÂʳ˻ýkPA•kPB=-$\frac{1}{4}$£®
£¨1£©Ç󶯵ãPµÄ¹ì¼£EµÄ·½³Ì£»
£¨2£©ÉèÖ±Ïßl²»Óë×ø±êÖá´¹Ö±£¬ÇÒÓë¹ì¼£E½»ÓÚ²»Í¬Á½µãM£¬N£¬ÈôOM¡ÍON£¬ÇóÖ¤£ºlÓëÒÔOΪԲÐĵĶ¨Ô²ÏàÇУ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÇóµÈ²îÊýÁÐ{an}ÖУ¬a1=3£¬a4=9£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÈôÊýÁÐ{an}µÄǰnÏîºÍΪSn=80£¬ÇónµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬ÒÑÖªÔ²E£º${£¨x+\sqrt{3}£©^2}+{y^2}$=16£¬µã$F£¨\sqrt{3}£¬0£©$£¬PÊÇÔ²EÉÏÈÎÒâÒ»µã£®Ïß¶ÎPFµÄ´¹Ö±Æ½·ÖÏߺͰ뾶PEÏཻÓÚQ£®
£¨1£©Ç󶯵ãQµÄ¹ì¼£¦£µÄ·½³Ì£»
£¨2£©ÉèÖ±ÏßlÓ루1£©Öй켣§¤ÏཻÓÚA£¬BÁ½µã£¬Ö±ÏßOA£¬l£¬OBµÄбÂÊ·Ö±ðΪk1£¬k£¬k2£¨ÆäÖÐk£¾0£©£¬ÈôÇ¡ºÃ³ÉµÈ±ÈÊýÁУ¬Çó¡÷OABµÄÃæ»ýSµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸