分析:先根据已知条件求出f(2),f(3),f(4)…找到其规律即可得到答案.
解∵f(1)=1,f(a+b)≤max{f(a),f(b)}
f(2)≤max{f(1),f(1)}=1,即f(2)≤1,
f(3)≤max{f(1),f(2)}=1,即f(3)≤1,
f(4)≤max{f(1),f(3)}=1,即f(4)≤1,
…,
f(2011)≤max{f(1),f(2010)}=1,即f(2011)≤1.
因为 f(2011)≠1,所以f(2011)<1,
从而 f(2012)≤max{f(1),f(2011)}=1,即f(2012)≤1.
假设 f(2012)<1,
因为 f(x)为偶函数,所以f(-2011)=f(2011).
于是 f(1)=f(2012-2011)≤max{f(2012,f(-2011)}=max{f(2012),f(2011)}<1,
即 f(1)<1.这与f(1)=1矛盾.
所以f(2012)<1不成立,从而只有f(2012)=1.
故答案为:1.
点评:本题主要考察函数的值.解决本题的关键在于一步步向前推,找到其最基本的地方即可.