精英家教网 > 高中数学 > 题目详情

已知{an}是正数组成的数列,其前n项和2Sn=an2+an(n∈N*),数列{bn}满足数学公式数学公式
(I)求数列{an},{bn}的通项公式;
(II)若cn=anbn(n∈N*),数列{cn}的前n项和数学公式

解:(I),∴a1=1,
n≥2时,an=Sn-Sn-1=
∴an2-an-12-an-an-1=0,
(an+an-1)(an-an-1-1)=0,
∴an-an-1=1.
∴数列{an}是首项为1,公差为1的等差数列,
∴an=n.
于是bn+1=bn+3n,∴bn+1-bn=3n,bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1
=
(II)

==


=
=
分析:(I)由题设知a1=1,an=Sn-Sn-1=,an2-an-12-an-an-1=0,故(an+an-1)(an-an-1-1)=0,由此能导出an=n.于是bn+1=bn+3n,bn+1-bn=3n,由此能求出bn
(II),由错位相减法能求出,由此能得到==
点评:第(I)题考查数列通项公式的求法,解题时要注意迭代法的合理运用;第(II)题考查前n项和的计算和极限在数列中的运用,解题时要认真审题,仔细解答,注意数列性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•眉山二模)设a1≤a2≤…≤an,b1≤b2≤…≤bn为两组实数,c1,c2,…,cn是b1,b2,…,bn的任一排列,我们称S=a1c1+a2c2+a3c3+…+ancn为两组实数的乱序和,S1=a1bn+a2bn-1+a3bn-2+…+anb1为反序和,S2=a1b1+a2b2+a3b3+…+anbn 为顺序和.根据排序原理有:S1≤S≤S2即:反序和≤乱序和≤顺序和.给出下列命题:
①数组(2,4,6,8)和(1,3,5,7)的反序和为60;
②若A=
x
2
1
+
x
2
2
+…+
x
2
n
,B=x1x2+x2x3+…+xn-1xn+xnx1其中x1,x2,…xn都是正数,则A≤B;
③设正实数a1,a2,a3的任一排列为c1,c2,c3
a1
c1
+
a2
c2
+
a3
c3
的最小值为3;
④已知正实数x1,x2,…,xn满足x1+x2+…+xn=P,P为定值,则F=
x
2
1
x2
+
x
2
2
x3
+…+
x
2
n-1
xn
+
x
2
n
x1
的最小值为
P
2

其中所有正确命题的序号为
①③
①③
.(把所有正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源:2012年四川省眉山市高考数学二模试卷(理科)(解析版) 题型:解答题

设a1≤a2≤…≤an,b1≤b2≤…≤bn为两组实数,c1,c2,…,cn是b1,b2,…,bn的任一排列,我们称S=a1c1+a2c2+a3c3+…+ancn为两组实数的乱序和,S1=a1bn+a2bn-1+a3bn-2+…+anb1为反序和,S2=a1b1+a2b2+a3b3+…+anbn 为顺序和.根据排序原理有:S1≤S≤S2即:反序和≤乱序和≤顺序和.给出下列命题:
①数组(2,4,6,8)和(1,3,5,7)的反序和为60;
②若A=++…+,B=x1x2+x2x3+…+xn-1xn+xnx1其中x1,x2,…xn都是正数,则A≤B;
③设正实数a1,a2,a3的任一排列为c1,c2,c3++的最小值为3;
④已知正实数x1,x2,…,xn满足x1+x2+…+xn=P,P为定值,则F=++…++的最小值为
其中所有正确命题的序号为    .(把所有正确命题的序号都填上)

查看答案和解析>>

同步练习册答案