精英家教网 > 高中数学 > 题目详情
精英家教网如图,椭圆
x2
a2
+
y2
b2
=1(a>b>0)的一个焦点是F(1,0),O为坐标原点.
(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;
(Ⅱ)设过点F的直线l交椭圆于A、B两点.若直线l绕点F任意转动,值有|OA|2+|OB|2<|AB|2,求a的取值范围.
分析:(Ⅰ)设M,N为短轴的两个三等分点,因为△MNF为正三角形,所以|OF|=
3
2
|MN|
,由此能够推导出椭圆方程.
(Ⅱ)设A(x1,y1),B(x2,y2).
(ⅰ)当直线AB与x轴重合时,由题意知恒有|OA|2+|OB|2<|AB|2
(ⅱ)当直线AB不与x轴重合时,设直线AB的方程为:x=my+1,代入
x2
a2
+
y2
b2
=1

由题设条件能够推导出
OA
OB
=(x1,y1)•(x2,y2)=x1x2+y1y2<0恒成立.由此入手能够推导出a的取值范围.
解答:精英家教网解:(Ⅰ)设M,N为短轴的两个三等分点,
因为△MNF为正三角形,所以|OF|=
3
2
|MN|

即1=
3
2
2b
3
,解得b=
3
.
a2=b2+1=4,因此,椭圆方程为
x2
4
+
y2
3
=1.

(Ⅱ)设A(x1,y1),B(x2,y2).
(ⅰ)当直线AB与x轴重合时,
|OA|2+|OB|2=2a2,|AB|2=4a2(a2>1),
因此,恒有|OA|2+|OB|2<|AB|2
(ⅱ)当直线AB不与x轴重合时,
设直线AB的方程为:x=my+1,代入
x2
a2
+
y2
b2
=1

整理得(a2+b2m2)y2+2b2my+b2-a2b2=0,
所以y1+y2=
2b2m
a2+b2m2
y1y2=
b2-a2b2
a2+b2m2

因为恒有|OA|2+|OB|2<|AB|2,所以∠AOB恒为钝角.
OA
OB
=(x1y1)•(x2y2)=x1x2+y1y2<0
恒成立.
x1x2+y1y2=(my1+1)(my2+1)+y1y2=(m2+1)y1y2+m(y1+y2)+1
=
(m2+1)(b2-a2b2)
a2+b2m2
-
2b2m2
a2+b2m2
+1

=
-m2a2b2+b2-a2b2+a2
a2+b2m2
<0.

又a2+b2m2>0,所以-m2a2b2+b2-a2b2+a2<0对m∈R恒成立,
即a2b2m2>a2-a2b2+b2对m∈R恒成立.
当m∈R时,a2b2m2最小值为0,所以a2-a2b2+b2<0.
a2<a2b2-b2,a2<(a2-1)b2=b4
因为a>0,b>0,所以a<b2,即a2-a-1>0,
解得a>
1+
5
2
或a<
1-
5
2
(舍去),即a>
1+
5
2

综合(i)(ii),a的取值范围为(
1+
5
2
,+∞).
点评:本题主要考查直线与椭圆的位置关系,不等式的解法等基本知识,考查运算能力和综合解题能力.解题时要注意运算能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,椭圆
x2
a2
+
y2
b2
=1
(a>b>0)过点P(1,
3
2
)
,其左、右焦点分别为F1,F2,离心率e=
1
2
,M,N是椭圆右准线上的两个动点,且
F1M
F2N
=0

(1)求椭圆的方程;
(2)求MN的最小值;
(3)以MN为直径的圆C是否过定点?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆
x2
a2
+
y2
b2
=1(a>b>0)上的点到左焦点为F的最大距离是2+
3
,已知点M(1,e)在椭圆上,其中e为椭圆的离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)过原点且斜率为K的直线交椭圆于P、Q两点,其中P在第一象限,它在x轴上的射影为点N,直线QN交椭圆于另一点H.证明:对任意的K>0,点P恒在以线段QH为直径的圆内.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•武清区一模)如图,椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点分别为F1(-1,0)、
F2(1,0),M、N是直线x=a2上的两个动点,且
F1M
F2N
=0

(1)设曲线C是以MN为直径的圆,试判断原点O与圆C的位置关系;
(2)若以MN为直径的圆中,最小圆的半径为2
2
,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F1,F2,若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为(  )

查看答案和解析>>

同步练习册答案