精英家教网 > 高中数学 > 题目详情
已知命题p:?a∈R,f(x)=
1
x2-a
是偶函数;命题q:?a∈R,g(x)=ax2+2x-1在(0,+∞)上单调递减,则下列结论正确的是(  )
分析:利用偶函数的定义可判断命题p为真;分类讨论可判断命题q是假命题.
解答:解:∵f(-x)=
1
x2-a
=f(x)
,∴命题p:?a∈R,f(x)=
1
x2-a
是偶函数为真命题;
g(x)=ax2+2x-1,
当a=0时,g(x)=2x-1在(0,+∞)上单调递增;
当a>0时,函数的对称轴为x=-
1
a
<0,g(x)=ax2+2x-1在(0,+∞)上单调递增;
当a<0时,函数的对称轴为x=-
1
a
>0,g(x)=ax2+2x-1在(0,-
1
a
)上单调递增,在(-
1
a
,+∞)上单调递减,故命题q是假命题
故选B.
点评:本题考查命题真假的判断,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、已知命题p:?x∈R,x2+2ax+1>0,命题q:a∈Z,若“p∧q”是真命题,则实数a的值可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,x2>0,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南充一模)已知命题P:?x0∈R+,log2x0=1,则¬P是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,2x<3x;命题q:?x∈R,x3=1-x2,则下列命题中为真命题的是(  )
A、p∧qB、p∧?qC、?p∧qD、?p∧?q

查看答案和解析>>

同步练习册答案