精英家教网 > 高中数学 > 题目详情
(2011•南通三模)在△ABC中,a2+c2=2b2,其中a,b,c分别为角A,B,C所对的边长.
(1)求证:B≤
π
3

(2)若B=
π
4
,且A为钝角,求A.
分析:(1)由余弦定理求得cosB= 
a2+c2
4ac
,由a2+c2≥2ac,得cosB≥
1
2
,再由0<B<π 得 B≤
π
3
,命题得证.
(2)正弦由定理及B=
π
4
,故sin2A=cos2C,因为A为钝角,故sinA=cosC=cos(
3
4
π-A)=sin(A-
π
4
)
,故有A+(A-
π
4
)=π
(或A=A-
π
4
,不合,舍),从而求得A的值.
解答:解:(1)由余弦定理,得cosB=
a2+c2-b2
2ac
=
a2+c2
4ac
. …(3分)
因a2+c2≥2ac,∴cosB≥
1
2
.…(6分)     
由0<B<π,得  B≤
π
3
,命题得证. …(7分)
(2)正弦由定理得sin2A+sin2C=2sin2B. …(10分)
B=
π
4
,故2sin2B=1,于是sin2A=cos2C.…(12分)
因为A为钝角,所以sinA=cosC=cos(
3
4
π-A)=sin(A-
π
4
)

所以A+(A-
π
4
)=π
(或A=A-
π
4
,不合,舍),
解得A=
8
. …(14分)
点评:本题主要考查正弦定理、余弦定理的应用,同角三角函数的基本关系,诱导公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•南通三模)定义在[1,+∞)上的函数f(x)满足:①f(2x)=cf(x)(c为正常数);②当2≤x≤4时,f(x)=1-|x-3|.若函数的所有极大值点均落在同一条直线上,则c=
1或2
1或2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•南通三模)底面边长为2m,高为1m的正三棱锥的全面积为
3
3
3
3
m2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•南通三模)已知(a+i)2=2i,其中i是虚数单位,那么实数 a=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•南通三模)如图,在三棱柱ABC-A1B1C1中.
(1)若BB1=BC,B1C⊥A1B,证明:平面AB1C⊥平面A1BC1
(2)设D是BC的中点,E是A1C1上的一点,且A1B∥平面B1DE,求
A1EEC1
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•南通三模)在平面直角坐标系xOy中,已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
2
2
,其焦点在圆x2+y2=1上.
(1)求椭圆的方程;
(2)设A,B,M是椭圆上的三点(异于椭圆顶点),且存在锐角θ,使
OM
=cosθ
OA
+sinθ
OB

(i)求证:直线OA与OB的斜率之积为定值;
(ii)求OA2+OB2

查看答案和解析>>

同步练习册答案