精英家教网 > 高中数学 > 题目详情

(本题满分14分)已知函数f (x)=lnx,g(x)=ex

 (I)若函数φ (x) = f (x)-,求函数φ (x)的单调区间;

 (Ⅱ)设直线l为函数 y=f (x) 的图象上一点A(x0,f (x0))处的切线.证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切.

注:e为自然对数的底数.

 

【答案】

解:(Ⅰ)

.  2分

∴函数的单调递增区间为.··············· 4分

(Ⅱ)∵ ,∴

∴ 切线的方程为, http:// /

,   ① ······················ 6分

设直线与曲线相切于点

,∴,∴.················· 8分

∴直线也为

,  ②······················· 9分

由①②得

.···························· 11分

下证:在区间(1,+)上存在且唯一.

由(Ⅰ)可知,在区间上递增.

,······ 13分

结合零点存在性定理,说明方程必在区间上有唯一的根,这个根就是所求的唯一.                                               

故结论成立.

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分14分)已知向量 ,函数.   (Ⅰ)求的单调增区间;  (II)若在中,角所对的边分别是,且满足:,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)已知,且以下命题都为真命题:

命题 实系数一元二次方程的两根都是虚数;

命题 存在复数同时满足.

求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年吉林省高三第一次月考文科数学试卷(解析版) 题型:解答题

(本题满分14分)已知函数

(1)若,求x的值;

(2)若对于恒成立,求实数m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省惠州市高三第三次调研考试数学理卷 题型:解答题

(本题满分14分)

已知椭圆的离心率为,过坐标原点且斜率为的直线相交于

⑴求的值;

⑵若动圆与椭圆和直线都没有公共点,试求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省惠州市高三第三次调研考试数学理卷 题型:解答题

((本题满分14分)

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE = x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).

(1)当x=2时,求证:BD⊥EG ;

(2)若以F、B、C、D为顶点的三棱锥的体积记为

的最大值;

(3)当取得最大值时,求二面角D-BF-C的余弦值.

 

查看答案和解析>>

同步练习册答案