精英家教网 > 高中数学 > 题目详情
已知四棱锥S-ABCD的底面是中心为O的正方形,且SO⊥底面ABCD,SA=2
3
,那么当该棱锥的体积最大时,它的高为(  )
A.1B.
3
C.2D.3
设底面边长为a,则高h=
SA2-(
2
a
2
)2
=
12-
a2
2

所以体积V=
1
3
a2h=
1
3
12a4-
1
2
a6

设y=12a4-
1
2
a6,则y′=48a3-3a5,y′=48a3-3a5=0,解得a=0或a=4时,
且当0<a<4时,y′>0,当a>4时,y′<0,
故y=12a4-
1
2
a6在(0,4)上是增函数,在(4,+∞)上是减函数,
∴当a=4时,y最大,即体积最大,
此时h=
12-
a2
2
=2,
故选C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三棱锥S-ABC的四个顶点在以O为球心的同一球面上,且SA=SB=SC=AB,∠ACB=90°,则当球的表面积为400π时,点O到平面ABC的距离为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知四棱锥S-ABCD中,四边形ABCD是直角梯形,∠ABC=∠BAD=90°,SA⊥平面ABCD,SA=AB=BC=1,AD=
12
,E是棱SC的中点.
(Ⅰ)求证:DE∥平面SAB;
(Ⅱ)求三棱锥S-BED的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

 (08年安徽信息交流)已知三棱锥S―ABC的四个顶点在以O为球心的同一球面上,且SA=SB=SC=AB,∠ACB=90。,则当球的表面积为400时。点O到平面ABC的距离为       (      )

    A.4                B.5                C.6                D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三棱锥S-ABC的四个顶点在以O为球心的同一球面上,且SA=SB=SC=AB,∠ACB=90°,则当球的表面积为400π时,点O到平面ABC的距离为(  )
A.4B.5C.6D.8

查看答案和解析>>

科目:高中数学 来源:2010年江西省南昌十六中高考数学一模试卷(文科)(解析版) 题型:选择题

已知三棱锥S-ABC的四个顶点在以O为球心的同一球面上,且SA=SB=SC=AB,∠ACB=90°,则当球的表面积为400π时,点O到平面ABC的距离为( )
A.4
B.5
C.6
D.8

查看答案和解析>>

同步练习册答案