精英家教网 > 高中数学 > 题目详情

【题目】如图,四边形ABCDBDEF均为菱形,设ACBD相交于点O,若∠DABDBF=60°,且FAFC

(1)求证:FC∥平面EAD

(2)求二面角AFCB的余弦值.

【答案】(1)见解析(2)

【解析】

(1)先证明平面FBC∥平面EAD,即证明FC∥平面EAD.(2)利用向量法求二面角AFCB的余弦值.

(1)证明:∵四边形ABCDBDEF均为菱形,

ADBCDEBF

AD平面FBCDE平面FBC

AD∥平面FBCDE∥平面FBC

ADDEDAD平面EADDE平面EAD

∴平面FBC∥平面EAD

FC平面FBCFC∥平面EAD

(2)连接FOFD∵四边形BDEF为菱形,且∠DBF=60°,∴△DBF为等边三角形,

OBD中点.所以FOBDOAC中点,且FAFC

ACFO

ACBDOFO⊥平面ABCD

OAOBOF两两垂直,建立如图所示的空间直角坐标系Oxyz

AB=2,因为四边形ABCD为菱形,∠DAB=60°,

BD=2,OB=1,OAOF

O(0,0,0),A(,0,0),B(0,1,0),C(-,0,0),F(0,0,),

=(,0,),=(,1,0),

设平面BFC的一个法向量为n=(xyz),

则有

x=1,则n=(1,-,-1),

BD⊥平面AFC∴平面AFC的一个法向量为=(0,1,0).

∵二面角AFCB为锐二面角,设二面角的平面角为θ

cosθ=|cos〈n〉|=

二面角AFCB的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).

1)求选出的3名同学是来自互不相同学院的概率;

2)设为选出的3名同学中女同学的人数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则abc的值为(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知(a>0,且a≠1).

(1)讨论f(x)的奇偶性;

(2)a的取值范围,使f(x)>0在定义域上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A=a1 , a2 , a3 , …,an , 其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的个数.
(Ⅰ)设集合P=2,4,6,8,Q=2,4,8,16,分别求l(P)和l(Q);
(Ⅱ)若集合A=2,4,8,…,2n , 求证:
(Ⅲ)l(A)是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为二次函数,不等式的解集,且在区间上的最大值为12.

(1)求函数的解析式;

(2)设函数上的最小值为,求的表达式及的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中错误的个数为:(

的图像关于点对称;②的图像关于点对称;

的图像关于直线对称;④的图像关于直线对称。

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆:,直线.

(1)若直线与圆相切,的值;

(2)若直线与圆交于不同的两点,当∠AOB为锐角时,k的取值范围;

(3),是直线上的动点,作圆的两条切线,切点为,探究:直线是否过定点。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每小时可获得的利润是100(5x+1﹣ )元.
(1)要使生产该产品2小时获得的利润不低于3000元,求x的取值范围;
(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.

查看答案和解析>>

同步练习册答案