精英家教网 > 高中数学 > 题目详情

已知曲线C的极坐标方程 是=1,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数)。

(1)写出直线与曲线C的直角坐标方程;

(2)设曲线C经过伸缩变换得到曲线,设曲线上任一点为,求的最小值。

 

【答案】

(1)

(2) -4

【解析】

试题分析:解:(1)

     (5分)

(2)代入C得

      (7分)

设椭圆的参数方程为参数) (8分)

(10分)

的最小值为-4。      (12分)

考点:参数方程的运用

点评:解决的关键是利用伸缩变换求解析式以及参数方程来得到最值,属于基础题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线C的极坐标方程为ρ=2cosθ,则曲线C上的点到直线
x=-1+t
y=2t
(t为参数)的距离的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,直线l的参数方程为
x=tcosα
y=1+tsinα
(t为参数,0≤α<π).以原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C的极坐标方程为ρcos2θ=4sinθ.
(1)求直线l与曲线C的平面直角坐标方程;
(2)设直线l与曲线C交于不同的两点A、B,若|AB|=8,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-4:坐标系与参数方程
在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程
为ρsin2θ=2acosθ(a>0),过点P(-2,-4)的直线l的参数方程为
x=-2+
2
2
t
y=-4+
2
2
t
(t为参数),直线l与曲线C相交于A,B两点.
(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程;
(Ⅱ)若|PA|•|PB|=|AB|2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的极坐标方程为ρ=4sinθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线的参数方程为
x=
2
2
t
y=
2
t+1
,(为参数),求直线与曲线C 相交所得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)选修4-2矩阵与变换:
已知矩阵M=
.
2a
21
.
,其中a∈R,若点P(1,-2)在矩阵M的变换下得到点P′(-4,0).
①求实数a的值;
②求矩阵M的特征值及其对应的特征向量.
(2)选修4-4参数方程与极坐标:
已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是
x=
2
2
t+m
y=
2
2
t
(t是参数).若l与C相交于AB两点,且AB=
14

①求圆的普通方程,并求出圆心与半径;
②求实数m的值.

查看答案和解析>>

同步练习册答案