精英家教网 > 高中数学 > 题目详情
(1)设函数f(x)=xlnx+(1-x)ln(1-x)(0<x<1),求f(x)的最小值;
(2)设正数p1p2p3,…,p2n满足p1+p2+p3+…+p2n=1,求证:p1lnp1+p2lnp2+p3lnp3+…+p2nlnp2n≥-n.
分析:(1)先求导函数,进而得导数为0的点,根据函数的定义域确定函数的单调性,从而可确定函数f(x)的最小值;
 (2)利用数学归纳法进行证明,关键是第二步的证明:假定当n=k时命题成立,即若正数p1p2,…,p2k满足p1+p2+…+p2k=1,则p1log2p1+p2log2p2+…+p2klog2p2k≥-k
再证明 n=k+1时,需利用归纳假设,从而得证.
解答:(1)解:对函数f(x)求导数:f'(x)=(xlnx)'+[(1-x)ln(1-x)]'=lnx-ln(1-x).于是f′(
1
2
)=0

x<
1
2
,f′(x)=lnx-ln(1-x)<0,f(x)
在区间(0,
1
2
)
是减函数,
x>
1
2
,f′(x)=lnx-ln(1-x)>0,f(x)
在区间(
1
2
,1)
是增函数.
所以f(x)在x=
1
2
时取得最小值,f(
1
2
)
=ln
1
2

(2)用数学归纳法证明.
(i)当n=1时,由(1)知命题成立.
(ii)假定当n=k时命题成立,即若正数p1p2,…,p2k满足p1+p2+…+p2k=1
p1log2p1+p2log2p2+…+p2klog2p2k≥-k
当n=k+1时,若正数p1p2,…,p2k+1满足p1+p2+…+p2k+1=1
x=p1+p2+…+p2kq1=
p1
x
q2=
p2
x
,…,q2k=
p2k
x

q1q2,…,q2k为正数,且q1+q2+…+q2k=1
由归纳假定知q1lnp1+p2lnp2+…+q2klnq2k≥-kp1lnp1+p2lnp2+…+p2klnp2k=x(q1lnq1+q2lnq2+…+q2klnq2k+lnx)≥x(-k)+xlnx,①
同理,由p2k+1+p2k+2+…+p2k+1=1-x可得p2k+1lnp2k+1+…+p2k+1lnp2k+1≥(1-x)(-k)+(1-x)n(1-x).②
综合①、②两式p1lnp1+p2lnp2+…+p2k+1lnp2k+1≥[x+(1-x)](-k)+xlnx+(1-x)ln(1-x)
≥-(k+1).
即当n=k+1时命题也成立.
根据(i)、(ii)可知对一切正整数n命题成立.
点评:本题以函数为载体,考查导数的运用,考查不等式的证明,注意数学归纳法的证题步骤.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•虹口区二模)已知:函数g(x)=ax2-2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设函数f(x)=
g(x)
x

(1)求a、b的值及函数f(x)的解析式;
(2)若不等式f(2x)-k•2x≥0在x∈[-1,1]时恒成立,求实数k的取值范围;
(3)如果关于x的方程f(|2x-1|)+t•(
4
|2x-1|
-3)=0有三个相异的实数根,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)=f1(x),f(f(x))=f2(x),它们定义域的交集为D,若对任意的x∈S,f2(x)=x,则称f(x)是集合M的元素,例如f(x)=-x+1,对任意x∈R,f2(x)=f(f(x))=-(-x+1)+1=x,故f(x)=-x+1∈M.
(1)设函数f(x)=log2(1-2x),判断f(x)是否是M的元素;
(2)f(x)=
axx+b
∈M(a<0),求使f(x)<1成立的x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义运算a*b为:a*b=
a(a≤b)
b(a>b)
,例如1*2=1,2*1=1,设函数f(x)=sinx*cosx,则函数f(x)的最小正周期为
,使f(x)>0成立的集合为
(2kπ,2kπ+
π
2
)
(2kπ,2kπ+
π
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
4•2010x+2
2010x+1
+xcosx(-1≤x≤1)
,设函数f(x)的最大值是M,最小值是N,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设函数f(x)=(3x2+x+1)(2x+3),求f′(x),f′(-1);
(2)设函数f(x)=x3-2x2+x+5,若f′(x°)=0,求x°的值.
(3)设函数f(x)=(2x-a)n,求f′(x).

查看答案和解析>>

同步练习册答案